
Course Summary

I. Introduction
II. Single component systems
III. Solutions
IV. Phase diagrams
V. Phase stability
VI. Surfaces
VII. Heat of formation
VIII. Heat capacity
IX. Solution models and equations of state
X. Thermodynamics and materials modeling
XI. Experimental methods 



I. Introduction: 
Define Terms; 
Basic Definitions; 
Gibbs Thompson; 
Hess’ Law (not path dependent); 
Second law and reversibility; 
Equilibrium; 
Third law T = 0 K Boltzmann equation; 
Legendre transform; 
Maxwell equations; 
Gibbs-Duhem equation (Gibbs phase rule)

Course Summary



What happens to the energy when I heat a material? 
Or How much heat, dq, is required to change the temperature dT?  (Heat Capacity, C)

dq = C dT
C = dq/dT

Constant Volume, CV

Constant Pressure, Cp

dU = dq + dw
With only pV work (expansion/contraction), dwec = -pdV
dU = dq – pdV 
For constant volume
(dU)V = dq, so
CV = (dU/dT)V, or the energy change with T: (dU)V = CV dT

dU = dq + dw = dq – pdV (only e/c work, i.e. no shaft work)
Invent Entropy H = U + PV so dH = dU + pdV + Vdp
(dH)p = dU + pdV for constant pressure
With only pV work (expansion/contraction), dwec = -pdV
dq = dU + pdV = (dH)p
Cp = (dH/dT)p , or the enthalpy change with T: (dH)p = Cp dT

Constant Volume
Computer Simulation
Helmholtz Free Energy, A
A = U – TS = G - pV

Constant Pressure
Atmospheric Experiments
Gibbs Free Energy, G
G = H – TS = A + pV
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Size dependent enthalpy of melting
(Gibbs-Thompson Equation)

For bulk materials, r = ∞, at the melting point DG = DH – T∞DS = 0
So, T∞ = DH/DS  Larger bonding enthalpy leads to higher T∞ , Greater randomness 
gain on melting leads to lower T∞.

For nanoparticles there is also a surface term,
(DG) V = (DH – TrDS)V + sA = 0, where Tr is the melting point for size r 
nanoparticle
If V = r3 and A = r2 and using DS = DH/T∞ this becomes,
r = s/(DH(1– Tr/T∞)) or Tr = T∞ (1 - s/(rDH)
Smaller particles have a lower melting point, and the dependence suggests a plot of 
Tr/T∞ against 1/r
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Derive the expression for Cp – CV

Cp - Cv = a2VT/kT
a = (1/V) (dV/dT)p
kT = (1/V) (dV/dP)T

CV = (dU/dT)V
From the Thermodynamic Square
dU = TdS – pdV so CV = (dU/dT)V = T (dS/dT)V - p (dV/dT)V  
Second term is 0 dV at constant V is 0
 (dS/dT)V = CV /T
Similarly
Cp = (dH/dT)p
From the Thermodynamic Square
dH = TdS + Vdp so Cp = (dH/dT)p = T (dS/dT)p - V (dp/dT)p  
Second term is 0 dp at constant p is 0
 (dS/dT)p = Cp /T

Write a differential expression for dS as a function of T and V 
dS = (dS/dT)VdT + (dS/dV)TdV using expression for CV above and Maxwell for (dS/dV)T
dS = CV /T dT + (dp/dT)VdV use chain rule: (dp/dT)V = -(dV/dT)p (dP/dV)T = Va / (VkT)
Take the derivative for Cp: Cp/T = (dS/dT)p = CV /T (dT/dT)p + (a/kT)(dV/dT)p = CV /T + (Va2/kT)
Cp - Cv = a2VT/kT
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Gibbs-Duhem Equation

Consider a binary system A + B makes a solution

At constant T and p:

Fundamental equation with chemical potential:

So, at constant T and p:

Reintroducing the T and p dependences:

Intensive properties are not independent, T, p, µ

For I components, only I – 1 have independent 
properties (Gibbs phase rule) if T and p are 
variable.

Determine partial molar quantities at equilibrium 
from number of moles

Partial vapor pressure from total vapor pressure
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Clausius-Clapeyron Equation

Consider two phases at equilibrium, a and b

dµa = dµb 

-S  U  V
H       A
-p  G  T

dG = Vdp –SdT
so
Vadp – SadT = Vbdp – SbdT
so
dptrans/dT = DS/DV
and
DG = 0 = DH – TtransDS   so  DS = DH/Ttrans
and 
dptrans/dT = DH/(TtransDV)  Clapeyron Equation
For transition to a gas phase, DV ~ Vgas

and for low density gas (ideal) V = RT/p
d(lnpvap)/dT = DHvap/(RTvap

2)  Clausius-Clapeyron Equation

This allows calculation of the vapor pressure as a function of T



Course Summary

II. Single Component Systems: 
First order transition; 
Clausius-Clapeyron equation (vapor pressure calculation);
Second order transition;
Virial equation of state for phase diagram;
Phase diagram P vs T (Gibbs phase rule)
Fugacity;
Van der Waals equation (Cubic equation of state);
CALPHAD and PREOS programs
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Clausius-Clapeyron Equation

d(ln pSat)/dT = DHvap/(RTvap
2)  Clausius-Clapeyron Equation

d(ln pSat) = (-DHvap/R) d(1/T)  So, plot ln pSat vs 1/T

ln[pSat/ pC
Sat] = (-DHvap/R) [1/T – 1/TC]  Use the critical point as the reference state

Shortcut Vapor Pressure Calculation:
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Like the Van’t Hoff Equation for Reaction Equilibria 
so escape of an ideal gas from liquid state is like a 
chemical reaction equilibria

Consider a chemical reaction with equilibrium constant Keq

dµa = dµb 
DG = DH – TDS   
DG = -RTlnKeq
So lnKeq = -DH/RT + DS/R
Take derivative relative to T
d(ln Keq) = DH/RT2 dT     Van’t Hoff Equation

Can determine DH from the mole fraction of 
reactants and products

-S  U  V
H       A
-p  G  T

So, plot ln Keq vs 1/T
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Clausius Clapeyron Equation

d(ln pSat) = (-DHvap/R) d(1/T)

ln[pSat/ pR
Sat] = (-DHvap/R) [1/T – 1/TR]

This is similar to the Arrhenius Plot
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What About a Second Order Transition?
For Example: Glass Transition Tg versus P?

There is only one “phase” present.  A flowing phase and a “locked-in” phase for Tg.
There is no discontinuity in H, S, V

dV = 0 = (dV/dT)p dT + (dV/dp)T dp  = VadT – VkTdp

dp/dTg = Da/DkT

Tg should be linear in pressure.

a = (1/V) (dV/dT)p
kT = (1/V) (dV/dP)T
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Second order transition Neel Temperature (like Curie Temp for antiferromagnetic)

Inden Model t = T/Ttr

For t <1
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Single Component Phase Diagrams

For a single component, an equation of state relates the variables of the system, PVT

Isochoric phase diagram
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Gibbs Phase Rule
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P= RT/V

Cubic Equation of State

Cubic Equation of State

Solve cubic equations (3 roots)

Ideal Gas Equation of State

Van der Waals Equation of State

Virial Equation of State

Peng-Robinson Equation of State (PREOS)

Z = 1

Law of corresponding states
P = RTr/(1-br) – a r2
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Landau theory for 2’nd order transitions

The order parameter G could be concentration (normal phase separation), magnetization (magnets) , orientation (LCs)
The point is to find a value for G above and below the critical point Tc (where phase separation become possible).
Particularly above Tc, G = 0 and we have no ”order” (think of no magnetization above the Curie temperature or no 
deviation from the average composition (r - < r >) above the critical temperature).

-The free energy is analytic (there is a function in G and T)
-The free energy F is symmetric in G (only even powers of G)

For simplicity, take a two term Taylor series expansion DF = a(T) G 2 + b(T)/2 G 4
Near the critical temperature assume for simplicity
  DF = a0 (Tc - T) G 2 + b0/2 G 4 

For a solution to G,  you must have b0 > 0 (this is obvious below); and a(T) must change sign for phase separation to 
occur at Tc so a(T) = a0 (Tc - T) 

At the critical point ∂F/∂G  = 0 = 2a0 (Tc - T) G0 + 2b0 G03 
To minimize free energy and make a stable phase either G0 = 0 (above Tc) or G02 = - a0 (Tc - T)/b0 (for T ≤ Tc)
For T ≤ Tc, G0 ~ (Tc - T)1/2 The critical exponent is ½ for Landau theory.

G

G0

G



Course Summary

III. Solutions: 
Ideal mixing; 
Real solutions;
Activity and activity coefficient;
Excess Gibbs free energy;
Raoult’s Law and Henry’s Law;
Hildebrand Model;
Hildebrand del parameter;
Asymmetric models (Redlich-Kister Expression);
Gibbs-Duhem for Solutions;
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An “Ideal Solution” means:

The change on mixing:
DS = -nkB (xA ln(xA) + xB ln(xB))
Since (ln x) is always negative or 0, DS is always positive for ideal solutions
DG = -T DS
Since (ln x) is always negative or 0, DG is always negative (or 0) and ideal solutions always mix
DH is 0, there is no interaction in ideal mixtures, there is no excluded volume, particles are ghosts to each other
DV = (dDG/dp)T = 0, there is no loss or gain of volume compared to the summed volume
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Real Solutions

xA becomes aA the activity so

DGmixing = RT(xAlnaA + xAlnaB)

Excess DGmixing = DGmixing - RT(xAlnxA + xBlnxB)
 = RT(xAln(aA/xA) + xBln(aB/xB) )
 = RT(xAln(gA) + xBln(gB))
g Is the activity coefficient

Excess DSmixing = -R(xAln(gA) + xBln(gB))

Method to use departure functions for calculations (PREOS.xls)
1) Calculation of properties in the ideal state is simple
2) With an equation of state, the departure function can be calculated
3) For any transition first calculate the departure function to the ideal state
4) Then carry out the desired change as an ideal mixture or gas
5) Then use the departure function to return to the real state
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Hildebrand Regular Solution Model

The change on mixing:
DS = -nkB (xA ln(xA) + xB ln(xB))  Ideal Solution
Since (ln x) is always negative or 0, DS is always positive for ideal solutions
DG = DH -T DS
Since (ln x) is always negative or 0, DG is positive or negative depending on DH :: can mix or demix
Depending on the sign of DH 
DV = (dDG/dp)T = 0, there is no loss or gain of volume compared to the summed volume

DH = n W xAxB
W is the interaction coefficient or regular solution constant

Molar Gibbs free energy of mixing 
DGm = RT(xA ln(xA) + xB ln(xB)) + W xAxB

W = zNA[uAB – (uAA+uBB)/2]

The equation is symmetric
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Asymmetric equations for asymmetric phase diagram

Sub-regular solution model

Redlich-Kister Expression
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Use of the Gibbs-Duhem Equation to determine the activity of a component

Constant p, T

If you know gA you can obtain gB by integration

Restatement of Gibbs-Duhem for Solutions



Course Summary

IV. Phase Diagrams: 
Eutectic;
Solid Solution;
L/V vs S/L Ideal; Azeotrope/Congruent; Heteroazeotrope/Eutectic;
 Regular solution model;
Lower critical solution behavior (LCST);
Freezing point depression;
Ternary phase diagram;



Phase DiagramsGibbs Phase Rule

Eutectic Phase Diagram Ag + Cu
Univariant Equilibrium
 Liquidus
 Solidus
Invariant Equilibrium
 Eutectic

Lever Rule
Tieline (conode)

     and 

Silver acts like a 
solvent to 
copper and 
copper acts like a 
solvent to silver 
with limited 
solubility that is 
a function of 
temperature 
with a solubility 
limit at the 
eutectic point (3 
phases in 
equilibrium)
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L => a + B



Solve for xB
SS xB

liq since xA + xB =1

Ideal

Cp(T) is constant

Calculate the Phase 
Diagram for a Solid Solution

27



Solid solution is flatter than ideal (Pos. deviation or destabilized) 
Liquid is deeper than ideal (Neg. Deviation or stabilized)
Deviations are associated with minima in phase diagram

28



Azeotrope

Heteroazeotrope

Liquid/Vapor Equilibria

Ideal

Solid/Liquid Equilibria

Ideal

Eutectic

Non-Ideal
Congruent 
melting solid 
solution

Phase diagram is split 
into two phase 
diagrams with a 
special composition 
that acts as a pure 
component

Same 
crystallographic 
structure in solid 
solution phase

Different 
crystallographic 
structures in solid 
solution phases
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L => a

L => a + b

L => a + L



Two Different 
Crystallographic

Phases at Equilibrium

One 
Crystallographic

Phase

30

g => a + b



Polyvinylmethyl Ether/Polystyrene (LCST Phase behavior)

DGm = RT(xA ln(xA) + xB ln(xB)) + W 
xAxB

W must have a temperature 
dependence for UCST

W = A + B/T so that it gets smaller 
with increasing temperature this is a 
non-combinatorial entropy i.e. 
ordering on mixing

31

2-Phase

Single Phase

2-Phase

Single Phase
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Freezing Point Depression

dµB,Solid = Vm
B,Solid dP – Sm

B,Solid dT + RT d(lnaB,Solid) 

Pure solid in equilibrium with a binary solution following Henry’s Law

Isobaric, pure component B so lnaB,Solid = 0

dµB,Solid = – Sm
B,Solid dTfp

Binary solution following Henry’s Law

dµB,Solution = – Sm
B,Solultion dTfp + RTfp d(lnyB,Solution)P,T 

For small x: e-x = 1 - x + …  or ln(1-x) = -x
So, for small yB,Solution: lnyB,Solution ~ -yA,Solution

So,

Sm
B,Solid dTfp = Sm

B,Solution dTfp + RTfp dyA,Solution

dyA,Solution = (Sm
B,Solid - Sm

B,Solution)/(RTfp) dTfp ~ -DSm
B/(RTfp) dTfp = -DHm

B/(RTF) (dTfp)/Tfp
 yA,Solution = -DHm

B/(RTF) ln(Tfp/TF) For small x: ln(x) = x – 1

yA,Solution = -DHm
B/(RTF) (Tfp/TF - 1) = -DHm

B/(RT2
F) DT

Tfp = TF - yA,SolutionRT2
F/DHm

B



Course Summary

V. Phase Stability: 
Metastable;
Supercool; superheat; supersaturate;
Kauzmann Paradox;
Thermal/density fluctuations;
Spinodal decomposition;
Binodal; spinodal; critical conditions;
Polymorphs; allotrophs;



The book considers first a reversible chemical reaction A <=> B
Cyclohexane from boat to chair conformation for instance

As temperature changes you can observer a different mix of states, E = kBT ~ 2.5 kJ/mole at RT
But fluctuations allow for 0.1 % boat conformation.  At 1073K 30% boat.  Probability is exp(-E/kT).
The percent in boat can be measured using NMR spectroscopy.

Chair Chair

Boat

Transition
State

Metastable

Transition
State

The equilibrium point 
depends on temperature, 
kBT
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Superheating and Melting
Superheating can occur since melting occurs at surfaces and if the surfaces are stabilized then 
superheated solids can be produced
Growth of a liquid phase relies on growth of a mechanical instability
A mechanical instability will not spontaneously grow if it occurs in a meta-stable region in T and 
P:
(dG/dx)=0 defines equilibrium or binodal; (d2G/dx2) = 0 defines the metastable limit or spinodal
(d3G/dx3) = 0 defines the critical point

G = -ST + Vp,   dG = -SdT + Vdp
(d2G/dp2)T = (dV/dp)T < 0  and  (d2G/dT2)p = -(dS/dT)p < 0

First requires that the bulk modulus be positive, 

Second requires positive heat capacity, (dS/dT)p = Cp/T > 0
Shear modulus 
goes to 0 at 
highest possible 
supercritical 
solid

35

-S  U  V
H       A
-p  G  T



Kauzmann Paradox, 
a thermodynamic basis for the 
glass transition

The entropy of the liquid becomes 
smaller than the entropy of the 
solid at the Kauzmann 
temperature, TK.  This could be the 
infinite cooling glass transition 
temperature.

36
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Since cN depends on 1/T specifying cN specifies the temperature.  Large cN is low tempearature.
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Polymorphs and Allotrophs

Allotroph:  Carbon as diamond or graphite

Polymorph:  Titania as anatase or rutile
 Silica as α-quartz, β-quartz, tridymite, cristobalite, moganite, coesite, 
and stishovite
 Calcium carbonate as calcite or argonite

Ostwald step rule: Least stable polymorph crystallizes first since it has
a free energy that is closest to the liquid or solution state.  This 
means that metastable phases form kinetically first if they exist.  If 
many polymorphs exist, they will form in order of free energy with 
the highest forming first.

Ostwald’s rule: Most stable polymorph does not always crystallize, rather, meta-stable polymorphs form at a higher rate if 
the surface tension difference between the melt/liquid solution and the polylmorph is small.  
Ostwald ripening: Metastable polymorphs may form small crystals.  Over time stable polymorphs grow from these small 
crystals into large crystals.  This has been generalized to growth of large phases due to ripening such as in crushed ice or 
ice cream.  
Ostwald Freundlich Equation: Small crystals dissolve more easily 
than large crystals.  This is the reason for Ostwald ripening.  Also 
true for vapor pressure of a liquid droplet (replace x with p)



Course Summary

VI. Surfaces: 
Surface excess properties;
Surface area and curvature;
Laplace equation (pressure versus curvature/size);
Contact angle;
Kelvin equation (vapor pressure for a droplet/bubble);
Solubility versus size;
Critical nucleus size;
Ostwald ripening;
Heterogeneous versus homogeneous nucleation;
Gibbs-Thompson and Ostwald-Freundlich equations;
Chemical (irreversible) or physical adsorption (reversible);
Adsorption isotherm (Langmuir, BET);
Block copolymers;



Laplace Equation

For a 100 nm (1e-5 cm) droplet of water in air (72 e-7 J/cm2 or 7.2 Pa-cm)
Pressure is 720 MPa (7,200 Atmospheres)

10-2

10-1

100

101

102

103

104

Pr
es

su
re

, M
Pa

100 101 102 103 104 105 106

Size, nm

Laplace Equation

Laplace Equation
for a water droplet
in air

1 µm 1 mm

1 Atm.

1,000 Atm.
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c is curvature 1/r
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Dihedral angles
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Young Dupre Equation
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Pressure for equilibrium of a liquid droplet of size ”r”

Reversible equilibrium

At constant temperature

Differential Laplace equation

Small drops evaporate, large drops grow

-S  U  V
H       A
-p  G  T
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Solubility and Size, r

Consider a particle of size ri in a solution of concentration xi with activity ai 

Derivative  form of the Laplace equation

Dynamic equilibrium

For an incompressible solid phase

Definition of activity

Solubility increases exponentially with 
reduction in size, r

(xi
l)r = (xi

l)r=∞ exp(2gsl/(rRT r)) Small particles dissolve to build large particles 
with lower solubility

-To obtain nanoparticles you need to supersaturate to a high concentration (far from equilibrium).
-Low surface energy favors nanoparticles. (Such as at high temperatures)
-High temperature and high solid density favor nanoparticles.

Supersaturation is required for any nucleation
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Critical Nucleus and Activation Energy for Crystalline Nucleation (Gibbs)

(M/r)is molar volume 

Surface increases free energy

Bulk decreases free energy

Barrier energy for nucleation at the critical nucleus size 
beyond which growth is spontaneous
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Critical Nucleus and Activation Energy for Crystalline Nucleation (Gibbs)

DfusGm = DfusHm - TDfusSm Lower T leads to larger DfusGm (Driving force for crystallization)
smaller r* and smaller Dl-sG*

Deep quench, far from 
equilibrium leads to 
nanoparticles
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Ostwald Ripening

Dissolution/precipitation mechanism for grain growth
Consider small and large grains in contact with a solution

Grain Growth and Elimination of Pores
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Formation of a surface nucleus versus a bulk nucleus from n monomers

Homogeneous Heterogeneous (Surface Patch)

Surface energy from the sides of the patch
Bulk vs n-mer
So surface excess chemical potential
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Barrier is half the height for nucleation
Size is half
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Three forms of the Gibbs-Thompson Equation

Ostwald-Freundlich Equation
x = supersaturated mole fraction
x∞ = equilibrium mole fraction
n1 = the molar volume

Free energy of formation for an n-
mer nanoparticle from a 
supersaturated solution at T

Difference in chemical potential between 
a monomer in supersaturated conditions 
and equilibrium with the particle of size r

At equilibrium

For a sphere
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Three forms of the Gibbs-Thompson Equation

Ostwald-Freundlich Equation

Areas of sharp curvature nucleate and grow to fill in.  Curvature k = 1/r

Second Form of GT Equation
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Three forms of the Gibbs-Thompson Equation

Third form of GT Equation/ Hoffman-Lauritzen Equation
B is a geometric factor from 2 to 6

Crystallize from a melt, so supersaturate by a deep quench

Free energy of a 
crystal formed at 
supercooled 
temperature T
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Adsorption Isotherms

Bg-Gas species (N2)
Bmon – Adsorbed (N2) in an occupied surface site
Vmon – Available surface site

aB
g is activity of B in the gas phase

q = GB/GB
Max  Fractional Coverage

Langmuir Adsorption Isotherm

GB
Max Is the coverage for a monolayer.

Equilibrium Constant:
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Derivation of Langmuir Equation (as derived by Hill)

Langmuir Equation is for equilibrium of a monolayer with a solution of concentration x2
A surface has adsorption sites that can hole solvent (1) or solute (2)
Some fraction of the surface bound to solute, x2

b, and some fraction to solvent, x1
b.

The concentration of solute in the solution ((partial pressure or pressure)/saturated pressure) is x2
s = q

The equilibrium involves x1
b + x2

s ó x1
s + x2

b

The equilibrium constant is given by, K = (x1
b x2

s)/(x1
s x2

b) = (1 - x2
b) q /((1 - q) x2

b)
Rearranging yields q = Kx2

b/(1 - x2
b + K x2

b) ~ Kx2
b/(1 + K x2

b) = p/p0
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Derivation of BET Theory

Langmuir Equation is for monolayers
BET is for multilayers where the first layer has an energy of adsorption, E1, and second and 
higher layers  use the energy of liquification, EL
Langmuir Equation is applied for each layer (gas and adsorbed layer are at dynamic equilibrium)
At Psat the surface is in the liquid (For Langmuir this was a monolayer)

Fractional coverage of layer i, qi
Rate of adsorption on layer i-1 to fill layer i, Ri-1,ads = ki,ad P qi-1
Rate if desorption from layer I, Ri,des = ki,des qi
ki,ads = ki,des = exp(-Ei/kT)

nm = monolayer amount of gas
n = experimental amount of gas adsorbed
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How can you predict the phase size? (Meier and Helfand Theory)
Consider lamellar micro-phase separation.

dA

dB
dt

Perfect match



Course Summary

VII. Heat of Formation: 
Dependencies in periodic table;
Electronegativity;
Energetics of formation (electrostatic, repulsion, dispersion, polarization, crystal field);
Atomic size (perovskites, spinels, zeolites);
Substitutional solids;
Conformational entropy of polymers



58

Electronegativity, the ability of an atom to attract electrons in a bond
Linus Pauling
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p-orbitals
6 valence 
electrons
(more 
acidic to 
right)

s-orbitals
2 valence 
electrons
(more 
basic to 
right)

Acidic
Basic

d-orbitals
10 valence 
electrons

Transition 
Metals

f-orbitals
14 valence 
electrons

Basic (at low 
oxidation state)

Acidic (at 
high 
oxidation 
state)
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Energetics of compound formation

Electrostatic attraction +-
Electron electron repulsion
Van der Waals or dispersion (d+ makes d- leads to net attraction)
Polarization (shifting within compound of electrons)
Crystal field effects
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Conformational Enthalpy of Polymers

The Rotational Isomeric State Model of Volkenstein and Paul Flory (Nobel Prize)

Carbon has a tetrahedral bonding arrangement
For a chain of carbon the two side groups interact with the side groups of neighboring carbons 

“Trans” is sterically the most favorable arrangement
“Gauche +” and “Gauche -” are less favorable

The Boltzmann equation gives the probability of a 
particular conformation, Z is the partition 
function or the sum of all of the different 
Boltzmann expressions in an ensemble

For Butene
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Conformational Enthalpy of Polymers

The Rotational Isomeric State Model of Volkenstein and Paul Flory (Nobel Prize)

For a polymer with N carbons there are N-2 covalent bonds
The number of discrete conformation states per chain is nN-2 where n is the number of discrete 
rotational states for the chain, tttt, g-g-g-g-,g+g+g+g+,g+ttt, etc. for N = 4; N1=1, N4=4, etc. assuming 
no end effects

Average rotational angle

Characteristic 
Ratio

Q is the bond angle
180°-109° = 71°
Eg+- = 2100 J/mole
C∞ = 3.6
Exp. 6.7



Course Summary
VIII. Heat Capacity: 
Cp-Cv;
Internal energy of a gas;
Dulong-Petit Law for solids;
Phonons; longitudinal; transverse; optical; acoustic
Brillouin Zones;
Acoustic phonons; Optical Phonons
Density of states;
Bose-Einstein statistics;
Einstein model;
Debye model;
Dispersion relations; 
Debye temperature;  Debye frequency;
Modulus and heat capacity;
Grüneisen parameter Cp-Cv
Spectroscopy; density of states; heat capacity;
Entropy from heat capacity;
Heat capacity from group contribution;
Electronic heat capacity;
Heat capacity at second order transitions;
Heat capacity of polymers



Heat Capacity

64

DSC

Heat is not a state function, so we define a state function related to heat, dS = dQ/T

-S    U(E)  V
 H   A(F)
-p     G       T

dH = VdP + TdS
At constant P (dH = TdS = dQ)P

We have Cp = (dH/dT) P  = (dQ/dT) P 

In the DSC we measure the heat flow dQ/dt (Watts) at a constant heating rate dT/dt at constant pressure, 
(dQ/dT) P = Cp
So, the y-axis is Cp times dT/dt the latter of which is constant
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Cp = (dH/dT) P  = (dQ/dT) P = ((dQ/dt) (dT/dt))P 
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Derive the expression for Cp – CV

Cp - Cv = a2VT/kT
a = (1/V) (dV/dT)p
kT = (1/V) (dV/dP)T

CV = (dU/dT)V
From the Thermodynamic Square
dU = TdS – pdV so CV = (dU/dT)V = T (dS/dT)V - p (dV/dT)V  
Second term is 0 dV at constant V is 0
 (dS/dT)V = CV /T
Similarly
Cp = (dH/dT)p
From the Thermodynamic Square
dH = TdS + Vdp so Cp = (dH/dT)p = T (dS/dT)p - V (dp/dT)p  
Second term is 0 dp at constant p is 0
 (dS/dT)p = Cp /T

Write a differential expression for dS as a function of T and V 
dS = (dS/dT)VdT + (dS/dV)TdV using expression for CV above and Maxwell for (dS/dV)T
dS = CV /T dT + (dp/dT)VdV use chain rule: (dp/dT)V = -(dV/dT)p (dP/dV)T = Va / (VkT)
Take the derivative for Cp: Cp/T = (dS/dT)p = CV /T (dT/dT)p + (a/kT)(dV/dT)p = CV /T + (Va2/kT)
Cp - Cv = a2VT/kT

-S U V

H  A

-p G T

From Chapter 1
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Monoatomic H(g) with only 
translational degrees of 
freedom is already fully 
excited at low temperatures. 
The vibrational frequencies 
(n) of H2(g) and H2O(g) are 
much higher, in the range of 
100 THz, and the associated 
energy levels are significantly 
excited only at temperatures 
above 1000 K. At room 
temperature only a few 
molecules will have enough 
energy to excite the 
vibrational modes, and the 
heat capacity is much lower 
than the classical value. The 
rotational frequencies are of 
the order 100 times smaller, 
so they are fully excited 
above ~10 K. 
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Atoms in a crystal (Dulong and Petit Model)
Works at high temperature

Three Harmonic oscillators, x, y, z
Spring (Potential Energy)
dU/dx = F = -kx where x is 0 at the rest position
U = -1/2 kx2

Kinetic Energy
U = ½ mc2

Three oscillator per atom so Um = 3RT
dU = -pdV + TdS
d(U/dT) V = T(dS/dT) V = CV

-SUV
 H  A
-pGT
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Each atom in a solid has 6 springs
Each spring with ½ kT energy
So, 6/2R = 3R = Cv
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Phonons Two size scales, a and l
If l ≥ a you are within a Brillouin Zone
Wavevector k = 2p/l

A phonon with wavenumber k is thus equivalent to an 
infinite family of phonons with 
wavenumbers k ± 2π/a, k ± 4π/a, and so forth.

k-vector is like the inverse-space vectors for the lattice
It is seen to repeat in inverse space making an inverse lattice

Brillouin zones, (a) in a square lattice, and (b) in a 
hexagonal lattice

those whose bands become zero at the center of 
the Brillouin zone are called acoustic phonons, since they 
correspond to classical sound in the limit of long 
wavelengths. The others are optical phonons, since they 
can be excited by electromagnetic radiation.

https://en.wikipedia.org/wiki/Brillouin_zone
https://en.wikipedia.org/wiki/Acoustic_phonon
https://en.wikipedia.org/wiki/Optical_phonon
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Phonons Two size scales, a and l
If l ≥ a you are within a Brillouin Zone
Wavevector k = 2p/l

The density of states is defined by 

The partition function can be defined in terms of E or in terms of k
E and k are related by the dispersion relationship which differs for different systems

For a longitudinal Phonon in a string of atoms the dispersion relation is: 
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Phonons

Bose-Einstein statistics gives the probability of finding a phonon in a given state:
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Phonons
Dispersion relation for phonons

Plus optical
Minus Acoustic



Einstein Model
Works at low and high temperature 
Lower at low temperature

Quantized energy levels

Bose-Einstein statistics determines the distribution of energies

The mean “n” at T is given by 

Average energy for a crystal with three identical oscillators
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Einstein Model
Works at low and high temperature 
Lower at low temperature

Average energy for a crystal with three identical oscillators

Einstein temperature: 
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Dispersion Curve

Angular frequency of vibrations as a function of wavevector, q

First Brillouin Zone of 
the one-dimensional 
lattice

Longer wavevectors 
are smaller than the 
lattice
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Longitudinal and Transverse dispersion relationships for [100],[110], 
and [111] for lead
Transverse degenerate for [100] and [111] (4 and 3 fold rotation axis)
Not for [110] (two fold rotation axis)
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Higher Characteristic T 
represents stronger 
bonds
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Higher Characteristic T 
represents stronger 
bonds
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Modulus and Heat Capacity

s = E e
F/A = E Dd/d

F = K Dd
K = F/Dd = E A/d

At large q, w = √(4K/m)
This yields wD from E

For Cu, qD = 344K

wD = 32 THz

K = 13.4 N/m
wD = 18 THz

80



Spectroscopy measures vibrations, this can be used to calculate the 
density of states, this can be integrated to obtain the heat capacity

Number of vibrational modes
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IR: High Polarity 
Motion of charged 
atoms under 
electromagnetic field

NaCl

Raman: High 
Polarizability 
Motion of electrons 
in polarizable bonds 
under 
electromagnetic field

Benzene, Graphene, 
Nanotubes, 



CV = (dU/dT)V
From the Thermodynamic Square
dU = TdS – pdV so CV = (dU/dT)V = T (dS/dT)V - p (dV/dT)V  
Second term is 0 dV at constant V is 0
 (dS/dT)V = CV /T
Similarly
Cp = (dH/dT)p
From the Thermodynamic Square
dH = TdS + Vdp so Cp = (dH/dT)p = T (dS/dT)p - V (dp/dT)p  
Second term is 0 dp at constant p is 0
 (dS/dT)p = Cp /T

Integrate Cp/T dT or Integrate CV/T dT to obtain S 

-SUV
 H   A
-pGT

Entropy from Heat Capacity
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Low Temperatures Solve Numerically
High Temperatures Series Expansion
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A striking example is the electronic heat capacity coefficients 
observed for Rh–Pd–Ag alloys given in Figure 8.22 [17]. In the 
rigid band approach the addition of Ag to Pd gives an extra 
electron per atom of silver and these electrons fill the band to a 
higher energy level. Correspondingly, alloying with Rh gives an 
electron hole per Rh atom and the Fermi level is moved to a 
lower energy. The variation of the electronic heat capacity 
coefficient with composition of the alloy maps approximately 
the shape of such an electron band. 

Add an 
electron from 
Ag raises 
Fermi level

Add a 
hole 
from Rh 
reduces 
n(eF)
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From Kittel and Kroemer Thermal Physics Chapter 2

For a system with quantized energy and two states e1 and e2, the ratio of the probabilities of 
the two states is given by the Boltzmann potentials, (t is the temperature kBT)

If state e2 is the ground state, e2 = 0, and the sum of exponentials is called the partition 
function Z, and the sum of probabilities equals 1 then,

Z = exp(-e2/t) + 1

Z normalizes the probability for a state “s”

P(es) = exp(-es/t)/Z

The average energy for the system is 𝑈 = #∑ "!#"#!/%
$ = 𝜏% &'($

&)



85

Heat Capacity of Polymers

Amorphous structure but with regular order along the chain
1-d vibrational structure

Natoms = number of atoms in a mer unit
 3 for CH2
N = number of skeletal modes of vibration
 N = 2 for -(CH2)n-

Einstein method works well above 100K



Course Summary
IX. Solution Models and Equations of State: 
Regular solution;
Quasi-regular solution with lattice vibrations;
Accounting for correlations (mean field or specific interactions);
Virial approach for mean field;
Correlation function for specific interactions;
Van der Waals model;
Margulis model; Margulis acid-base;
Redlich-Kister model (asymmetric phase diagrams);
Scatchard-Hildebrand theory (volume versus mole fraction);
Flory-Huggins model (polymers based on volume fraction);
Group Contribution Models:
Hydrogen bonding MOSCED (Modified separation of cohesive energy density); SSCED (Simplified 
separation of cohesive energy density); 
Local Clustering Models: Wilson’s equation; NRTL (Non-random two liquid model); 
Surface area rather than volume fraction for interactions: UNIQUAC (Universal quasi-chemical model);
UNIFAC (Universal functional activity coefficient model);
Solutions with multiple sublattices (NaCl);
Order-disorder systems
Order parameter
Non-stoichiometric compounds (perovskite oxides)
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Regular Solution Solution Model

µA ~ dG/dxA 
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Excess molar Gibbs energy of mixing for quasi-regular solution

G = H –TS so first term is enthalpic, second is entropic

t is a characteristic 
temperature, when T = t ideal 
solution behavior is seen
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Correlations
Dilute: Ideal behavior, 
there are no interactions

Semi-dilute: weak or 
strong interactions are 
possible

With weak interactions the 
system can be treated with 
a “mean field”.  No 
correlation is observed, we 
can use the second virial 
coefficient and Hildebrand 
Model

With strong interactions 
we need to use detailed 
information about 
interactions, correlation 
function or other models



90



91

Margulis one-parameter Model

Chapter 11 Elliot and Lira 

Hildebrand Model

Margulis acid-base Model



Course Summary

X. Thermodynamics and Materials Modeling: 
Quantum mechanics (ab initio method, electronic wave functions, nuclei don’t move);
Density functional theory (Minimize E(r) as a function of  r(r));
Molecular dynamics modeling (potential fields between atoms); 
Mesoscale models (coarse graining; short range interaction potentials);
Dissipative particle dynamics (DPD);
Monte Carlo Metropolis method;
Ising model;
Packages to do materials simulations of different types: LAMMPS; HOOMD-blue; ESPResSo; etc.
Free servers for simulations from Google:  Colaboratory
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Coarse Grain Simulations

 DPD Simulations

Machine Learning

Data Mining Techniques

Thermodynamics and Materials Modeling
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Quantum mechanical/ab initio methods 

1) Electronic wavefunction is independent of the nuclei since electrons are much 
smaller and move much faster: Born Oppenheimer Approximation

2) Solve the Schrodinger equation

 Hamiltonian in atomic units:

 ri electron positions; da nuclear positions, Za nuclear charge
 Kinetic Energy – e- nuc. attraction + e- e- repulsion + Nuc. Nuc. repulsion
3) Solve approximately since true wave function can’t be found directly.  Compare 

proposed function results with data.  Variational Principle: lowest energy wins.

4)  Obey Pauli exclusion principle.
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Density functional theory

1) Ground state can be obtained through minimization of E(r) of r(r) 
2) Parallel non-interacting system (NIS)

3)   Write the energy functional as

 
 KE of NIS + e- nuc. int. + Coulomb + exchange correlation energy
4) Minimize E[r] to obtain wave functions then iterate to obtain the ground 
 state density and energy
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Molecular Dynamics

1) Generate initial condition with particles identified by position and velocity
2) Calculate the force on each particle using potentials
3) Forces (accelerations) remain constant for a time step, position and velocity change

4) Repeat 3) until temperature is constant

5) After steady state record velocities and positions so that <r2> = 6Dt is found
Time calculation is on the order of nanoseconds.

Neither Monte Carlo nor Molecular Dynamics can calculate the free energy since they ignore 
large energy regions of phase space
They can calculate differences in free energy for phase diagram construction
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Coarse Grain Simulations

 DPD Simulations

Machine Learning

Data Mining Techniques
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Coarse Grain Simulations

 DPD Simulations

Machine Learning

Data Mining Techniques
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Monte Carlo/Metropolis Method

Periodic Boundary Conditions 

Fix T, V, N

“Z” is a state of the system

1) Calculate f(Z) by molecular mechanics with potentials
2) Accept a configuration “Z” if it has a low energy relative to kT with some randomness
3) Calculate the average

1) Start with a random configuration calculate f(Z)
2) Move one atom or molecule or group of molecules
3) Calculate f(Z’) if lower than f(Z) accept
4) If higher than f(Z) calculate exp(-Df/kT) and a random number from 0 to 1
5) If higher than random number accept
6) Repeat
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Dissipative Particle Dynamics (DPD)



Course Summary
XI. Experimental Thermodynamics
Calorimetry
 Differential Scanning Calorimetry
 Modulated DSC
 Microcalorimetry
 Differential Thermal Analysis
 Thermal Gravimetric Analysis
 Bomb Calorimetry/Combustion Calorimetry

Didn’t cover the other 25 techniques (no time)



Course Summary

I. Introduction
II. Single component systems
III. Solutions
IV. Phase diagrams
V. Phase stability
VI. Surfaces
VII. Heat of formation
VIII. Heat capacity
IX. Solution models and equations of state
X. Thermodynamics and materials modeling
XI. Experimental methods 




