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Course Summary

I. Introduction:

Define Terms;

Basic Definitions;

Gibbs Thompson;

Hess’ Law (not path dependent);
Second law and reversibility;
Equilibrium;

Third law T = 0 K Boltzmann equation;
Legendre transform:;

Maxwell equations;

Gibbs-Duhem equation (Gibbs phase rule)



What happens to the energy when I heat a material?
Or How much heat, dq, is required to change the temperature dT? (Heat Capacity, C)

dq=CdT
C =dq/dT
SUV Constant Volume, Cy
H A dU =dq + dw Constant Volume
PGT With only pV work (expansion/contraction), dw., = -pdV Computer Simulation
dU =dq — pdV Helmholtz Free Energy, A
For constant volume A=U-TS=G-pV
(dU)y =dq, so

Cy = (dU/dT)y, or the energy change with T: (dU)y = Cy dT

Constant Pressure, Cp

dU =dq + dw = dq — pdV (only e/c work, i.e. no shaft work) Constant Pressure

Invent Entropy H=U + PV so dH = dU + pdV + Vdp Atmospheric Experiments
(dH), = dU + pdV for constant pressure Gibbs Free Energy, G
With only pV work (expansion/contraction), dw., = -pdV G=H-TS=A+pV

dq =dU + pdV = (dH),

C, = (dH/dT),,, or the enthalpy change with T: (dH), = C, dT



Size dependent enthalpy of melting
(Gibbs-Thompson Equation) SUV
H A
-PGT
For bulk materials, r = o=, at the melting point AG=AH - T.,AS =0
So, T,,= AH/AS Larger bonding enthalpy leads to higher T , Greater randomness
gain on melting leads to lower T,,.

For nanoparticles there is also a surface term,

(AG) V =(AH - T,AS)V + A = 0, where T, is the melting point for size r
nanoparticle

If V=13 and A = r? and using AS = AH/T, this becomes,

r=o/(AH(1- T/T,)) or T,=T, (1 - 6/(rAH)

Smaller particles have a lower melting point, and the dependence suggests a plot of
T/T,, against 1/r



Derive the expression for C, — C,

C,-Cy = a?VT/xy
a = (1/V) (dv/dT),
k7 = (1/V) (dV/dP);

Cy = (dU/dT)y

From the Thermodynamic Square

dU =TdS — pdV so Cy = (dU/dT), =T (dS/dT)y - p (dV/dT)y
Second term is 0 dV at constant Vis 0

(dS/dT)y = C/T

Similarly

C, = (dH/dT),

From the Thermodynamic Square

dH =TdS + Vdp so C, = (dH/dT), = T (dS/dT), - V (dp/dT),
Second term is O dp at constant p is O

(dS/dT),=C, /T

Write a differential expression for dS as a function of Tand V

dS = (dS/dT)dT + (dS/dV);dV using expression for C,, above and Maxwell for (dS/dV);

dS =C,/T dT + (dp/dT),dV use chain rule: (dp/dT), = -(dV/dT), (dP/dV); = Va / (Vky)

Take the derivative for C,: C,/T = (dS/dT), = C, /T (dT/dT), + (o/x7)(dV/dT), = Cy, /T + (Vou?/xy)
C,-Cy = a?VT/xy



Gibbs-Duhem Equation

G :Zn,-[ (:G ] =2.niG =2 niu;
: i i

on; Jn
l E 2T, DM i

Consider a binary system A + B makes a solution

G =nplp +nglg

dG =npdup +dnpus +ngdug +dngup
Intensive properties are not independent, T, p, u

S UV Fundamental equation with chemical potential:

H A

o G T dG =-S8dT + Vdp + Z,u,-dn,- For I components, only I — 1 have independent
P At constant T and p: * properties (Gibbs phase rule) if T and p are

dG = ppsdn, + ugdng variable.

So, at constant T and p:

Determine partial molar quantities at equilibrium
nadus +ngdug =0 i.e. Z”idﬂi ~0

from number of moles

Reintroducing the T and p depiendences:

Partial vapor pressure from total vapor pressure
SAT —Vdp + Y n;du; =0 porp J porp

]



Clausius-Clapeyron Equation

Consider two phases at equilibrium, o and 3

SuUV
H A
di = dig dG = Vdp —-SdT PaT
so
Vedp — SedT = VBdp — SPAT
so
dPyirans/dT = AS/AV
and
AG=0=AH - T ;1 AS 50 AS = AH/Trans
and

dpians/dT = AH/(T.,AV) Clapeyron Equation

For transition to a gas phase, AV ~ V&

and for low density gas (ideal) V = RT/p

d(Inp,,,)/dT = AH,,./(RT,,,?) Clausius-Clapeyron Equation

This allows calculation of the vapor pressure as a function of T



Course Summary

I1. Single Component Systems:

First order transition;

Clausius-Clapeyron equation (vapor pressure calculation);
Second order transition;

Virial equation of state for phase diagram,;

Phase diagram P vs T (Gibbs phase rule)

Fugacity;

Van der Waals equation (Cubic equation of state);
CALPHAD and PREOS programs



Clausius-Clapeyron Equation

d(In p%t)/dT = AH,,,/(RT,,,2) Clausius-Clapeyron Equation
d(In p%) = (-AH,,,/R) d(1/T) So, plot In p2tvs 1/T

In[p%2/ p@'] = (-AH,,,/R) [1/T = 1/T] Use the critical point as the reference state

Shortcut Vapor Pressure Calculation:

sail
log ;P

”
= z(1+ o)1 1)
3 T’/



Like the Van’t Hoff Equation for Reaction Equilibria
so escape of an ideal gas from liquid state is like a
chemical reaction equilibria

Consider a chemical reaction with equilibrium constant K,

SuUV
H A
dpg = dyg pGT
AG = AH - TAS
AG = -RTInK¢q
So InKgq = -AH/RT + AS/R
Take derivative relative to T
d(In Keq) = AH/RT2dT  Van’t Hoff Equation So, plot In Keq vs 1/T

Can determine AH from the mole fraction of
reactants and products



Clausius Clapeyron Equation

d(In p%2) = (-AH,,,/R) d(1/T)

log,oP, = Z(l + (u)(l
3

r

N

-
T.
In[p%/ pg*] = (-AH\5p/R) [1/T - 1/Tg]

This is similar to the Arrhenius Plot
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Figure 9.1. Plot to evaluate Clausius-Clapeyron for calculation of vapor pressures at high
pressures, argon (left) and ethane (right).
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a = (1/V) (dV/dT), What About a Second Order Transition?
k1= (1/V) (dV/dP); For Example: Glass Transition T, versus P?

There is only one “phase” present. A flowing phase and a “locked-in” phase for T,.
There is no discontinuity in H, S, V

dV =0 = (dVv/dT), dT + (dV/dp); dp = VodT - Vi,dp
dp/dT, = Ao/Aky

Ty should be linear in pressure.



Second order transition Neel Temperature (like Curie Temp for antiferromagnetic)

i . . Inden Model t = T/T,,
o
150 | °Fc0‘990 ) For t <1 m(l+,3)
= o3 ® Feg 9470 C ;,Mg =KLR —
- e v Feg 9330 In(l-77")
'T= _ g e * Feg 950
s | o % | Fort>1
:E feo ?%
b:. ao ln l + TS
' Mof“.. ° ] C;Tdc =KSR(—_)
50 Lretle 5 7 nnet e SRmmodt oottt In(1—177)
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T/K
Figure 2.13 Heat capacity of wiistite around the Néel temperature [19]. O: Feg ggO; @®:

Fep9470: V: Fegg3g0: +: Feg9250. Reproduced by permission of the Mineralogical
Society of America.
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Single Component Phase Diagrams

Isochoric phase diagram

T;at
6476 K
22.1 MPa

p/kPa

100 kPa or
lbar |eeeeeeeeeeee- Pl ok kbl et Gl

liquid

solid

: H,0
0.611kPa |..............

273.15 373.15 =
273.16 I'’K

Figure 2.7 The p,T phase diagram of H,O (the diagram is not drawn to scale).

For a single component, an equation of state relates the variables of the system, PVT
14



Gibbs Phase Rule

F=C-Ph+2 (2.15)

In Chapter 4 the determination of the number of components in complex systems
will be discussed in some detail. In this chapter we shall only consider single-com-
ponent systems. For a single-component system, such as pure H;O,C=1and F=3
— Ph. Thus, a single phase (Ph = 1) is represented by an area in the p,T diagram and
the number of degrees of freedom F'is 2. A line in the phase diagram represents a
heterogeneous equilibrium between two coexisting phases (Ph =2) and F = 1,
while three phases (Ph = 3) in equilibrium are located at a point, F = 0.

15



Z=1 P=RT/V Ideal Gas Equation of State
Van der Waals Equation of State
- 3 ) 22
P = ,RT -= Cubic Equation of State |, - 2287 5 = RT, (P J22]| -9
V-b 2 64 P, 8P, \av ) | av2
: T
P =RTp/(1-bp) —a p? 7a ¥
RT Law of corresponding states
Z = lizf‘ep{zuuz | 4 bE’ _QE
1-bp RT

Virial Equation of State

[Z=1+Bplt G2+ Dp+ ..
a

BT =b- 1
Peng-Robinson Equation of State (PREOS)
hp

puitiD ap? or Z= l__.Z_.
(1-bp) 1+2bp—b2p? (1-bp) bRT 1+2pp— b2p?
Z = | +Zrep + Zatl — | 4 bp __a bp
1—bp BRT 1+2bp—b*p?
Cubic Equation of State
16

Z2-(1-B)Z*+ (4 -3B*-2B)Z—(AB-B*-B%) =0
Solve cubic equations (3 roots)
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Figure 1.3 Ideal gas behavior at five temperatures. Figure 1.4 P-V-T behavior of water at the same temperatures used in Fig. 1.3. The plot
is prepared from the steam tables in Appendix E.
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Figure 7.5 Ilustration of the prediction of isotherms by the Peng-Robinson equation
of state for CO, (T,= 304.2 K} at 275 K, 290 K, 300 K, 310K, 320 K, and 350 K.
Higher temperatures result in a high pressure for a given volume. The “humps”
are explained in the text. The calculated vapor pressures are 36.42 bar at 275 K,
53.2 bar at 290 K, and 67.21 bar at 300 K.



Landau theory for 2°nd order transitions

The order parameter / could be concentration (normal phase separation), magnetization (magnets) , orientation (LCs)
The point is to find a value for I"above and below the critical point 7, (where phase separation become possible).
Particularly above T, I'= 0 and we have no ”order” (think of no magnetization above the Curie temperature or no

deviation from the average composition (p - < p >) above the critical temperature).
T>T,
-The free energy is analytic (there is a function in /"and 7) [
-The free energy F' is symmetric in / (only even powers of /) [z, T
r<T,
For simplicity, take a two term Taylor series expansion AF = a(T) 12+ b(T)/2 I'* I,
Near the critical temperature assume for simplicity T T e R
AF=ay(T,-T) ['*+by2 I'* of order parameter [

For a solution to /7, you must have b, > 0 (this is obvious below); and a(7) must change sign for phase separation to
occur at T, so a(T) =ao (T, - T)

At the critical point OF/01" =0 =2a, (T, - T) I+ 2by I}

To minimize free energy and make a stable phase either 7, = 0 (above T,) or )2 = - ay (T, - T)/by (for T< T,)
For T<T,, I')~ (T, - T)"2 The critical exponent is ¥ for Landau theory.

18



Course Summary

Ill. Solutions:

Ideal mixing;

Real solutions;

Activity and activity coefficient;

Excess Gibbs free energy;

Raoult’s Law and Henry’s Law;

Hildebrand Model;

Hildebrand del parameter;

Asymmetric models (Redlich-Kister Expression);
Gibbs-Duhem for Solutions;



An “ldeal Solution” means:

The change on mixing:

AS = -nkg (X In(xa) + x5 In(xg))

Since (In x) is always negative or 0, AS is always positive for ideal solutions

AG =-TAS

Since (In x) is always negative or 0, AG is always negative (or 0) and ideal solutions always mix

AH is 0, there is no interaction in ideal mixtures, there is no excluded volume, particles are ghosts to each other
AV = (dAG/dp);= 0, there is no loss or gain of volume compared to the summed volume



Real Solutions

X, becomes a, the activity so
AGmixing = RT(XAlnaA + XAlnaB)

Excess AGmixing = AGmixing - RT(XAInXA + XBlnXB)
= RT(xaln(aa/xa) + xgln(ag/xg) )
= RT(xaln(ya) + xgIn(vg))

v Is the activity coefficient

Excess ASmixing = -R(xaIn(ya) + xgIn(yg))

Method to use departure functions for calculations (PREOS.xIs)

Calculation of properties in the ideal state is simple

With an equation of state, the departure function can be calculated

For any transition first calculate the departure function to the ideal state
Then carry out the desired change as an ideal mixture or gas

Then use the departure function to return to the real state

=

(92



Hildebrand Regular Solution Model

The change on mixing:

AS = -nkg (X In(xa) + x5 In(xg)) Ideal Solution

Since (In x) is always negative or 0, AS is always positive for ideal solutions

AG = AH -T AS

Since (In x) is always negative or 0, AG is positive or negative depending on AH :: can mix or demix
Depending on the sign of AH

AV = (dAG/dp);= 0, there is no loss or gain of volume compared to the summed volume

AH =n Q xpXg 0.4+ Q/RT=4

Q) is the interaction coefficient or regular solution constant 00

Molar Gibbs free energy of mixing
AG,, = RT(x5 In(xa) + X5 In(Xg)) + Q XaXg

04+

Allll\("lll/ RI‘

Q = zNp[upg — (Upatugg)/2]

The equation is symmetric i g o , . o s
9 y Figure 3.10 The molar Gibbs energy of mixing of a regular solution A-B for different

values of Q/RT.



Asymmetric equations for asymmetric phase diagram

Sub-regular solution model

exc — um ) .
Amix m _"/\'\B(Azl'\/\ +A12°\B)

m n

exc IS % e o
AmixGm _ZZ'\A'\ BA'_I

i=1j=l

Redlich-Kister Expression

ACXC

"
mixGm = .\‘A.\‘B[Q + Al(.\'A - .\'B) + Az(.\'A — .\'B)

+ A3(.\'A —.\'8)3 +l

23



Use of the Gibbs-Duhem Equation to determine the activity of a component

na duA + anuB =) Constantp, T

xpdlna, +xgdlnag =0
xadlnxpy +xpdInys +xgdInxg +xgdIn yg =0

dx dx
A 4 xg—2 =drp +dxg =0
XA XRB
XA dIn '}’A + -\'Bd In }’B =() Restatement of Gibbs-Duhem for Solutions

xpadInx, +xgdInxg =x,

If you know v, you can obtain yg by integration
B
XA
Inyg —Inyglxg=h=- | ~Sdliny,
B

\B:l 24



Course Summary

IV. Phase Diagrams:

Eutectic;

Solid Solution;

L/V vs S/L Ideal; Azeotrope/Congruent; Heteroazeotrope/Eutectic;
Regular solution model;

Lower critical solution behavior (LCST);

Freezing point depression;

Ternary phase diagram;



@ @
Gibbs Phase Rule Phase Diagrams @ @
F+Ph=C+2 e ©
1400 T T T T . .
Silver acts like a
solvent to
Eutectic Phase Diagram Ag + Cu 1300 copper and
Univariant Equilibrium copper acts like a
Liquidus solvent to silver
Solidus 1200 with limited
Invariant Equilibrium 5 solubility that is
Eutectic &~ 1100 a function of
liquid — Cu(ss) + Ag(ss) Ag(SS) + liq temperature
Ag(ss) with a solubility
Lever Rule 1000 F limit at the
Tieline (conode) | Bd M s i e i eutectic point (3
pE=pf=p? =.. fori=1.2,.C : phases in
HiaD =G and HEGO=phe) 90%.0 0.14 0.16 0.I8 ' 10 equilibrium)
'\‘Cu

Figure 4.1 Phase diagram of the system Ag—Cu at 1 bar [1].
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Calculate the Phase

sS _ ,,S,0 SS
By =My, + BT i, Diagram for a Solid Solution

/,zgq =,uk° +RT In agq

S,0 ss _,, Lo lig
My +RTIna, =p," +RT Ina,

Css i
ss liq
Ug =Hg S,0 ss l,o lig
Mg +RT Inag =ug” +RT Inag
liq o(s—1) liq o(s—l)
i aA‘ =_A,uA i aB“ :_A'uB
as RT ad RT

;)(s—)l) :‘u:,o 7:“,‘&0 :AfusGo :Afusl_l,‘o 7TAfusS;)

i

A

o _ 0 _ 0
AfsG; =0 AsS; = AfusHi /Tfus,i

i

s T .
A = A g H? —TA gy S? :AfusH,-O(l_T ] Cy(T) is constant
fus,i

li s—l
In a/;q =_A#::Y_)):_AquHX l_ 1 _
S RT R

RT R r Tfus.A

. A HS
lig _ _ss fusf o | 1 1
X' =X, expl— [—

1700 T T T
1600 R
1500 \
N ideal model *
S1400F ST 1
ideal model ™
ACy 20 —
1300 +
ss
1200 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

XGe

Figure 4.4 Phase diagram for the system Si—Ge at 1 bar. The solid lines represent experi-
mental observations [2] while the dotted and dashed lines represent calculations assuming
that the solid and liquid solutions are ideal with AC,, # 0 and AC,, =0, respectively.

Solve for xg%5 xghd since x, + xg =1
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xNaCl
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G
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8

_6 1 1 /1
0.0 02 04 0.6
NaCl

Figure 4.7 (a) Phase diagram of the system KCI-NaCl. (b) Gibbs energy curves for the
solid and liquid solutions KCI-NaCl at 1002 K. Thermodynamic data are taken from refer-

ence [3]:

Solid solution is flatter than ideal (Pos. deviation or destabilized)
Liquid is deeper than ideal (Neg. Deviation or stabilized)
Deviations are associated with minima in phase diagram
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Liquid/Vapor Equilibria

363.4 f—_De, Fixed Pressure
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1200 Cryﬂi:gg;aphlc T, solid solution 0
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800 Q?:
= g
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Figure 4.9 (a) Immiscibility gap of the binary solid solution V,O3-Cr,0O3 as described by
the regular solution model. (b) Gibbs energy of mixing curve of the solid solution at the

temperatures marked in the phase diagram. Thermodynamic data are taken from reference
30
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N

4

Temperature *C

Figure 4. Flory-Huggins-Staverman fit to the CPC of the i89/
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O" CH
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100 k
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Figure 7. Cloud-point curves for i89/120 and h89/120 blends.

AG,,
XaXp

= RT(xa In(xa) + xg In(xg)) +

Q) must have a temperature
dependence for UCST

Q= A+ B/T so that it gets smaller

with increasing temperature this is a

non-combinatorial entropy i.e.

ordering on mixing

Polyvinylmethyl Ether/Polystyrene (LCST Phase behavior)

Wide Angle Scattering
Em—

T T T
™ To.cl Tp

Temperature
e
(a)
A B c D
o Ful |o o
© =]
e @ o @
Crystalline Domains of Single Phase
PWE PVME Melt Phase Separated
Domains ) Blend

In a Homogeneous PS/PVME Matrix
Figure 4. Clearing behavior of higher crystullmlty blends (a)
Wide-angle scattering versus temperature. (b) S
phase behavior.
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Freezing Point Depression

Pure solid in equilibrium with a binary solution following Henry’s Law

Freezing-point depression

d#B,solution == _gﬂ,soluliond’rfp
+ RTj,(dInyg

ya4 A(solute)
yg B(solvent)

B(pure, solid solvent

dUg solid = VMg solid AP — SMg solig AT + RT d(Inag s4iq)

)
Isobaric, pure component B so Inag gy g =0

dHB,Solid =- SmB,SoIid dep
Binary solution following Henry’s Law
dUB,Sqution =- SmB,Solultion dep + RTfp d(lnyB,Sqution)P,T

Forsmall x:e*X=1-x+ .. orlIn(1-x) = -x
SO; for small yB,Sqution: IrWB,Sqution ~ ’yA,Sqution

Figure 8. Schematic description of freezing-point depression.

So,

SmB,Solid dep = SmB,Solution dep + RTfp dyA,Sqution

dyA,Sqution = (SmB,SoIid - SmB,Sqution)/(RTfp) dep - _ASmB/(RTfp) dep = _AHmB/(RTF) (dep)/Tfp
Ya solution = “AHMg/(RTE) In(Tg,/Te) For small x: In(x) = x—1

Ya,Solution = ‘AHmB/(RTF) (Tfp/TF -1) = -AHmB/(RTZF) AT

Tro=Te- yA,SqutionRTzF/ AH™g 3



Course Summary

V. Phase Stability:

Metastable;

Supercool; superheat; supersaturate;
Kauzmann Paradox;

Thermal/density fluctuations;
Spinodal decomposition;

Binodal; spinodal; critical conditions;
Polymorphs; allotrophs;



The book considers first a reversible chemical reaction A <=>B
Cyclohexane from boat to chair conformation for instance

Transition Transition
State State
EA D D
The equilibrium point

V) R
depends on temperature,
kgT

J/mol

’ (=~ Chair

Chair M'etastablﬂe

As temperature changes you can observer a different mix of states, E = kgT ~ 2.5 kJ/mole at RT
But fluctuations allow for 0.1 % boat conformation. At 1073K 30% boat. Probability is exp(-E/KT).

The percent in boat can be measured using NMR spectroscopy.
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Superheating and Melting SUuUV

Superheating can occur since melting occurs at surfaces and if the surfaces are stabilized then H A
superheated solids can be produced

pGT
Growth of a liquid phase relies on growth of a mechanical instability
A mechanical instability will not spontaneously grow if it occurs in a meta-stable region in T and
P:
(dG/dx)=0 defines equilibrium or binodal; (d?G/dx?) = 0 defines the metastable limit or spinodal
(d3G/dx3) = 0 defines the critical point
G=-ST+Vp, dG=-SdT + Vdp
2 2)_ = 2 2y =
(d’G/dp?)y = (dV/dp); < 0 and (d*G/dT?),=-(dS/dT),<0
. . . 1 1%
First requires that the bulk modulus be positive, k7 :—:—Wx) :
K]‘ (4 op T
£ Al | Shear modulus
Second requires positive heat capacity, (dS/dT), = C,/T >0 =§ goes to 0 at
S0l Al . li«\ng{gl,,/w““‘l :5 1 highest possible
i » ~| ,\ £ supercritical
supercooled - lim. cryst 3} S stahility T

__% 60 - liq}uid/ o - ‘z ~ : N ST SOI|d

v Bl Ry, |

;E 40 + g ':"cr_\.xlul J : = : S~

20 P T l 500 1000 1500 2000
500 1000 1500 T/K
T/K
Figure 5.3 Entropy of liquid and crystalline aluminium in stable, metastable and unstable Figure 5.2 TCI]][’)CI'(I[UI'C LleCl]dCllCC of the isothermal elastic stiffness constants of alu-
temperature regions [12]. The temperatures where the entropy of liquid and crystalline alu- minium [10]. 35

minium are equal are denoted T and Tljpy cryst. respectively.



Kauzmann Paradox,
a thermodynamic basis for the )
glass transition

free energy curve
for liquid

free energy curve
for solid

H
Tm

Temperature —
(a) ! ! ! . (b) ! ! . ! '
40+ 90} Se Tius
‘ liquid , , T ;
v .S =N 59 @p. J' — P
. g liquid i supercooled A fus Sm (T) AiusSm(Ttus) * T dr
- R | I 2 60} liquid ] Tiys
= 1 -—
T T,
- | 4 | B
5 301 : ,} /<olid The entropy of the liquid becomes
C 30+ 1
~ ! v smaller than the entropy of the
T Nk solid at the Kauzmann
251t ¢ 1S )
solid . temperature, T,. This could be the
200 400 600 800 1000 0 200 4()(’;-/ }(2()() 800 1000 infinite Cooling g|ass transition
. L . et N temperature.
Figure 5.1 (a) Heat capacity of crystalline, liquid and supercooled liquid Se as a function

of temperature [1-3]. (b) Entropy of crystalline, liquid and supercooled liquid Se as a func-
tion of temperature.
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Since yN depends on 1/T specifying N specifies the temperature. Large xN is low tempearature.

N =28

AGrix /(RTﬁC/N )

0.0 0.2 04 06 08 1.0
“
: \ : | L . | : Fig. 4.4. Phase diagram of a symmetric polymer mixture (Ny = Ng = N). In
0.0 02 0.4 0.6 08 1.0 addition to the binodal (continuous line) the spinodal is shown ( broken line)

VA

Fig. 4.3. Gibbs free energy of mixing of a symmetric binary polymer mixture (Ny =
Ng = N), as described by the Flory-Huggins equation
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Polymorphs and Allotrophs

Allotroph: Carbon as diamond or graphite

Polymorph: Titania as anatase or rutile

Silica as a-quartz, B-quartz, tridymite, cristobalite, moganite, coesite,
and stishovite

Calcium carbonate as calcite or argonite

Calcite (on left) and Aragonite (on right). Both crystals are made out of
calcium carbonate, making these crystals dimorphic.

Ostwald’s rule: Most stable polymorph does not always crystallize, rather, meta-stable polymorphs form at a higher rate if
the surface tension difference between the melt/liquid solution and the polylmorph is small.

Ostwald ripening: Metastable polymorphs may form small crystals. Over time stable polymorphs grow from these small
crystals into large crystals. This has been generalized to growth of large phases due to ripening such as in crushed ice or

ice cream.

Ostwald Freundlich Equation: Small crystals dissolve more easily pz:q = exp (%)

than large crystals. This is the reason for Ostwald ripening. Also o _ 27 Vaom

true for vapor pressure of a liquid droplet (replace x with p) i
Vatom = atomic volume

Ostwald step rule: Least stable polymorph crystallizes first since it has

. . : : = Bol t
a free energy that is closest to the liquid or solution state. This e

~ = surface tension (J - m™2)

means that metastable phases form kinetically first if they exist. If 7. Bl s (ox ol oS P e aice)
many polymorphs exist, they will form in order of free energy with p = partial pressure (or chemical potential or concentration)
the highest forming first. T = absolute temperature

During the course of his academic career, Ostwald published more than 500 original research papers for the scientific literature and approximatelil‘45 books.®]



Course Summary

VI. Surfaces:

Surface excess properties;

Surface area and curvature;

Laplace equation (pressure versus curvature/size);
Contact angle;

Kelvin equation (vapor pressure for a droplet/bubble);
Solubility versus size;

Critical nucleus size;

Ostwald ripening;

Heterogeneous versus homogeneous nucleation;
Gibbs-Thompson and Ostwald-Freundlich equations;
Chemical (irreversible) or physical adsorption (reversible);
Adsorption isotherm (Langmuir, BET);

Block copolymers;



SuUV c is curvature 1/r

H A

PET dU = [(pP - p*) + 0(c) +¢2))A dl

Atequilibrium (dU) g y ,, =0

p[j - p? =0(c| +cy)=0 L+L
i rnoon

Laplace Equation

Pressure, MPa

10* 3
Laplace Equation
10° < for a water droplet
in air
R 1,000 Atm.
10 N
10" o
1pm 1 mm
10° 3
o 1 Atm.
10 -
10? B BLLALLLL s s
10° 10’ 10? 10° 10* 10° 10
Size, nm

For a 100 nm (1e™ cm) droplet of water in air (72 e J/cm?Z or 7.2 Pa-cm)

Pressure is 720 MPa (7,200 Atmospheres)
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Dihedral angles

ﬁ o a[}r ofp

oW

Figure 6.9 Two-dimensional projection of equilibrium at a plane of contact between three
phases o, B and y where the angles between the three two-phase boundaries meeting in a
line of contact are denoted 6%, 6" and 67.

o WPt L o PxePx L goxox —g

B P g i,
sin6%  sin6%  singP
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solid

Figure 6.10 Contactangle 6 of aliquid drop resting on a solid surface. The definition of the
forces used in the figure eliminates the contribution from gravity.

=0 Young Dupre Equation



SuUV
H A
-pGT

o

PZn/pZn

0.01

0.1

r/ um

10

Thomson’s (or Kelvin’s) equation

Pressure for equilibrium of a liquid droplet of size "r”

Reversible equilibrium

vegpt =v'gp' At constant temperature

Differential Laplace equation

Figure 6.14 The vapour pressure of Zn over a spherical droplet of molten Zn at the melting
temperature as a function of the droplet radius. py, = 2- 10~ bar,

6.58 ¢ cm™3 [8].

£=0.78J m2 and p=

Small drops evaporate, large drops grow
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Solubility and Size, r
Consider a particle of size r; in a solution of concentration x; with activity a;

A a8l
d(p® /’l)—d[“y ] Derivative form of the Laplace equation

r

dy} = d,u; = Vl.'\ dp® = V; d

27" ] Dynamic equilibrium

r

‘)1 .\l . . .
WDy =)y =V} i For an incompressible solid phase
P
Hp =HA +RT Inay Definition of activity
(.\'I.l )5 VI.“ 28l o ' '
In = Solubility increases exponentially with

reduction in size, r

Small particles dissolve to build large particles
| = | sl

O); = (%) exp(27*/(pRT 1)) with lower solubility

-To obtain nanoparticles you need to supersaturate to a high concentration (far from equilibrium).

-Low surface energy favors nanoparticles. (Such as at high temperatures)

-High temperature and high solid density favor nanoparticles.

Supersaturation is required for any nucleation



Critical Nucleus and Activation Energy for Crystalline Nucleation (Gibbs)

Bulk decreases free energy

. 4 s3( p . 2.4l
A,_S(;:—gm' (M)A,-us(;m +4nr-y®

Surface increases free energy

(M/r)is molar volume

A _.G :
P8 42| £ )A fusOm +87ry .
dr M ‘

maximum dA | G/dr =0 Barrier energy for nucleation at the critical nucleus size
> beyond which growth is spontaneous

r¥ = [2(M/P)}’Sl [/A 356G m

2 )
3P- A i'us(’ m

Al—s(;* —
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Critical Nucleus and Activation Energy for Crystalline Nucleation (Gibbs)

9 )
3P~A t'us(’ m

r¥ = Iz(.M/p)ySI ] /A t'usG m AI—SG =

A¢sGm = AsusHim - TAwusSm Lower T leads to larger A¢,G,, (Driving force for crystallization)
smaller r* and smaller A (G”

(a) 1000 T T T T 1 (b) 1.0 v
T/ Tiys= 0.95
100 ¢
0.5
% ol Deep quench, far from
2 1 s é(m equilibrium leads to
< ' 401 Z 3 00F .
5 F S nanoparticles
< 01 =
-0.5+
0.01}
. 4 3 . 2 sl
) ok e S — i = . . Aj_sG=——mr el A fusGm +4mr” ys
090 092 094 096 0.98 1.00 0.00 0.02 0.04 0.06 0.08 3 M
T/ Ty r/um

Figure 6.16 (a) The critical radius (r*) and thermodynamic barrier for nucleation of Al
(AG*) versus degree of supercooling 7/Ty. (b) The Gibbs energy of a spherical Al crystal
relative to the supercooled Al(1) as a function of its radius. AfysHm = 10.794 kJ mol=!, Tpyg
=933.47K and p=2.55 g cm™ [8].
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Ostwald Ripening

Dissolution/precipitation mechanism for grain growth

Consider small and large grains in contact with a solution

-10}

Ap/kJ mol™

=20

73() 1 " 1 1
1073 1072 107! 100 10"

r/um
Figure 6.17 The difference in the chemical potential of Au(s) between a spherical particle
with radius 10 um and a smaller particle withradius r. p =18.4 g em~3 and y”] =138 m™2
[21].
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Formation of a surface nucleus versus a bulk nucleus from n monomers

Homogeneous

AGH = _'1¢ +W’I

Wu = “n - ””(l

X,

¢=p—uM=len['—r\
)

[ ,
v, =ay= Y[%L] n’ =yn’
Bulk vs n-mer

So surface excess chemical potential

AG, =—0n +yn

Heterogeneous (Surface Patch)
4 / /
AGn' _ _q)” +"|”n'

v =2nrhy=2ymhvn’ :\V'n'_2

Surface energy from the sides of the patch

po I—

AG. =—0on"+y'n’




AG* =

Barrier is half the height for nucleation
Size is half

oY [ 5]

4\1!" z\un*‘ :¢n* AG'*=W’~ _ 'n'* _
27¢° 3 2 40 2

) /7 / 1 < * \% ‘YV

L S S yE = L —

! ! - >
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Three forms of the Gibbs-Thompson Equation

Ostwald-Freundlich Equation
(2‘» 'Y x = supersaturated mole fraction
X =Xx_6€x —1i X = equilibrium mole fraction
FK ]/\T v, = the molar volume

Free energy of formation for an n-

AG = _”q) + YA mer nanoparticle from a

supersaturated solution at T

x‘
kT In| — . . . .
. Difference in chemical potential between
Xeo / a monomer in supersaturated conditions
and equilibrium with the particle of size r

O=pn—p_

I(AG IA
M =)= _(I) +‘Yyl (_ At equilibrium

dn dV | 22 dA 2
For a sphere A=4nr = (47'()‘3“/ dV 7

-



Three forms of the Gibbs-Thompson Equation

(2vy

Ostwald-Freundlich Equation X =Xx_6€x —)
pk rkT

Areas of sharp curvature nucleate and grow to fill in. Curvature x = 1/r

9. .
= (Kl TK )‘ IY \ Second Form of GT Equation
kT )

X =Xx_ex
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Three forms of the Gibbs-Thompson Equation

BYT
r= Third form of GT Equation/ Hoffman-Lauritzen Equation
AH /‘(Tm o T) B is a geometric factor from 2 to 6
AS AH Crystallize from a melt, so supersaturate by a deep quench

T : AH B aryetal formed
Af =0~ 1'3(AH/ B AH, Bl'"Y — ’.3 TL (l = T) = B’-.Y su&::);rclzcioled ae

T temperature T

52



Adsorption Isotherms

k Bg-Gas species (N,)

o )
BL‘ T VM()N PAR— BM()N Bon — Adsorbed (N,) in an occupied surface site
kg V,.on — Available surface site
k [’
e . e S O e B
Equilibrium Constant: KL N - - agt is activity of B in the gas phase

‘ g .'11”
kg a[“;(l“l;l -1g)

max 1.0
FB / FB 0
= — Kl a B 0.8}
. max | -6 ’
I r[; / rB 0.6
(o)
Langmuir Adsorption Isotherm 04}
0.2
0 = ['g/T'gM™ Fractional Coverage :
0'(()),01 0.1 l 10
['gMax|s the coverage for a monolayer. p / bar

Figure 6.24 Adsorption isotherms following Langmuir adsorption isotherm.
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Derivation of Langmuir Equation (as derived by Hill)

Langmuir Equation is for equilibrium of a monolayer with a solution of concentration x,

A surface has adsorption sites that can hole solvent (1) or solute (2)

Some fraction of the surface bound to solute, x,°, and some fraction to solvent, x;°.

The concentration of solute in the solution ((partial pressure or pressure)/saturated pressure) is x,°
The equilibrium involves x,® + x,5 & x5 + x,°

The equilibrium constant is given by, K = (x;° x,5)/(x;5 x,P) = (1 - x,°) 6 /((1 - 6) x,P)

Rearranging yields 0 = Kx,P/(1 - x,P + K x,°) ~ Kx,2/(1 + K x,P) = p/p,

=0



Derivation of BET Theory

Langmuir Equation is for monolayers

BET is for multilayers where the first layer has an energy of adsorption, E;, and second and
higher layers use the energy of liquification, E,

Langmuir Equation is applied for each layer (gas and adsorbed layer are at dynamic equilibrium)
At Psat the surface is in the liquid (For Langmuir this was a monolayer)

Fractional coverage of layer i, 6,

Rate of adsorption on layer i-1 to fill layer i, Ri; 45 = K29 P 0.1
Rate if desorption from layer |, R; jes = Kj ges 0;

ki,ads = ki,des = exp(‘Ei/kT)

v[(po/p) =1 me

Cc Cp(El_EL>
— X —_—
RT

1 c—1/(p N 1 Vi = monolayer amount of gas
Do v,c Vv =experimental amount of gas adsorbed
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How can you predict the phase size? (Meier and Helfand Theory)
Consider lamellar micro-phase separation.

N3 3
) S > - 2/3 ar2
dpp = # x xdv2* NXp
0,
[)
10°
B °
3
£ L
9 > Perfect match
- b
102 1 1 1 1 1 [ B O |

10°
M

Fig. 4.30. Set of samples of Fig. 4.28. Molecular weight dependence of the layer

spacing dag
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Course Summary

VII. Heat of Formation:

Dependencies in periodic table;

Electronegativity;

Energetics of formation (electrostatic, repulsion, dispersion, polarization, crystal field);
Atomic size (perovskites, spinels, zeolites);

Substitutional solids;

Conformational entropy of polymers



Electronegativity, the ability of an atom to attract electrons in a bond
Linus Pauling

58



Basic

s-orbitals
2 valence
electrons
(more
basic to
right)

[hide] |

VT'E Blocks in the periodic table
Group 4 2 3 4 5 6 7 8 g 10 1 12 13 14 15 16 17 18
{ Period )
d-orbitals B
1
1:) valence He
. 7 electrons AFIdIC (at s e 718 s o
Li || Be high BIcCI| N O] F | Ne
11 12 Ba§|c (-at low Transition oxidation e R R
® | Nal||mg| oOxidation state) Metals state) allsillellsllala
4 19 || 20 || 21 22 || 23 || 24 || 25 || 26 || 27 || 28 || 29 || 80 | 31 32 || 33 || 34 || 35 || 36
K || Ca || Sc Ti Vv Cr ||Mn || Fe || Co|| Ni || Cu|l Zn || Ga || Ge || As || Se || Br || Kr
. |37 |[38] 3 40 |[ 41 |[42 |1 43 [ 44 |[ 45 |[ 46 |[ 47 |[48 |[ 49 |[ 50 |[ 51 |[ 52 |[ 53 | 54
I ]
Rb || Sr Y Zr || Nb || Mo g Te ! Ru || Rh || Pd || Ag || Cd In Sn || Sb || Te | Xe
. | 5558 ] 57 72 |[73|[74a|[75 |76 |[ 77 | 78 |[ 79 |[ 80 || 81 |[ 82 || 83 .'874'..'8'5".."3%".
cs|lBalfLa| * Hf || Ta || W || Re || Os || Ir Pt || Au|[Hg || TI || Pb || Bi l Po n At u Rn
.'é'“..'s'a".."eb". , 104105 106 107 108 100 110 111 . 112 E"i'i':'a"??"i'i'li"éé"i'i'é";;"i'i'é";;"i'i'%";;"i'i'é";
I H H H H H H H
:_Fr_:lL Ra ;"; Ac l Rf ii Db ii Sg ii Bh ii Hs ii Mt ii Ds i Rg i{i Cn ii Nh ii FI ¥ Mc ii Lv ¥ Ts i Og
. 58 [ 59 |[60 | 6162 63| 64 |[ 65 66| 67 |[ 68 |[ 69 |[ 70 |[ 71
f-orbitals * i "
Ce || Pr || Nd {Pmi Sm | Eu || Gd | Tb || Dy || Ho || Er || Tm || Yb || Lu
14 valence — e '
90 1 91 | 92 |1 93 n 94 i 95 i 96 i 97 i 98 :i 99 ::100 : 101 : 102 i 103 :
electrons X ! ' ! i I i i it i it i i i :
Th:_Pa‘l V) ILNp‘uLPqugAmngggBkggCfggEsggFm;gMdggNo§§Lr;
s-block p-block d-block f-block Background color shows the block of the periodic table

: Border shows natural occurrence of the element

Acidic

p-orbitals
6 valence
electrons
(more
acidic to
right)
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Energetics of compound formation

M*(g) + X (g) = MX(s) ~AjattH m

AlattHm = Pelectrostatic + d)rcpulsinn + d)dispcrsinn + d)pnlzu'izulinn
ez (Dcrystul field

Electrostatic attraction +-

Electron electron repulsion

Van der Waals or dispersion (6+ makes 0- leads to net attraction)
Polarization (shifting within compound of electrons)

Crystal field effects
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Carbon has a tetrahedral bonding arrangement

Conformational Enthalpy of Polymers

The Rotational Isomeric State Model of Volkenstein and Paul Flory (Nobel Prize)

For a chain of carbon the two side groups interact with the side groups of neighboring carbons

For Butene H  CH,
H"l.. K
'T-I ------ >
synperiplanar H;C H synperiplanar
_ HsCcp, HsCcp,
©
§ H eclipsed eclipsed H
S H H H H
] H H
g HaCy HiCh
w .
H HsC :
\ H™ M H™ ="H
\ 2N
5 kcal/mol E
{ 3.6 kealimol
0.88 kcal/mol } : :
I I + f f >0
60° 120° 180° 240° 300° 360°
CH;3 CH, CH;
H CH; H H H3C H
H H H H H H

gauche

CH;
antiperiplanar

H
gauche

“Trans” is sterically the most favorable arrangement
“Gauche +” and “Gauche -” are less favorable

The Boltzmann equation gives the probability of a
particular conformation, Z is the partition
function or the sum of all of the different
Boltzmann expressions in an ensemble

exp(—E(¢;)/kT)

P(p;) = 7

Z = ? e PE:

i
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Conformational Enthalpy of Polymers

The Rotational Isomeric State Model of Volkenstein and Paul Flory (Nobel Prize)

For a polymer with N carbons there are N-2 covalent bonds

The number of discrete conformation states per chain is vN-2 where v is the number of discrete
rotational states for the chain, tttt, g'g'gg,g*g*g*g" g'ttt, etc. for N = 4; N;=1, N,=4, etc. assuming
no end effects

(N - 2)!
Z = NT N -exp (=N E(@,)/KT) ...exp(=N, E(@,)/kT)
R
Average rotational angle
—1exp(—=E(@;)/kT)cos@; 1—o0
(cos @) = =~ -
{—1exp(—E(¢;)/kT) 1+ 20
Q is the bond angle
. 7. 180°-109° = 71°
Characteristic C. = lim ()0 _ (1 + cos ) (1 + {cos ¢)) £~ 2100 1/mole

N-o NI? (1 —cos8)(1 —(cos)) C=36
Exp. 6.7 b2



Course Summary

VIIl. Heat Capacity:

Cp-Cv;

Internal energy of a gas;

Dulong-Petit Law for solids;

Phonons; longitudinal; transverse; optical; acoustic
Brillouin Zones;

Acoustic phonons; Optical Phonons
Density of states;

Bose-Einstein statistics;

Einstein model;

Debye model;

Dispersion relations;

Debye temperature; Debye frequency;
Modulus and heat capacity;

Gruneisen parameter Cp-Cv
Spectroscopy; density of states; heat capacity;
Entropy from heat capacity;

Heat capacity from group contribution;
Electronic heat capacity;

Heat capacity at second order transitions;
Heat capacity of polymers



Heat Capacity

DSC

Heat is not a state function, so we define a state function related to heat, dS = dQ/T

-S UE) V
dH = VdP + TdS H A(F)
At constant P (dH = TdS = dQ)p p G T

We have C, = (dH/dT) p = (dQ/dT) p

In the DSC we measure the heat flow dQ/dt (Watts) at a constant heating rate dT/dt at constant pressure,
(dQ/dT)p=C,
So, the y-axis is C,, times dT/dt the latter of which is constant



A. amorphous

C, = (dH/dT) p = (dQ/dT) p = ((dQ/dt) (dT/dt))p

B. semicrystalline

(umop oxa) moj4 1eaH
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Derive the expression for C, - Cy From Chapter 1

C,-Cy = a?VT/xy
a = (1/V) (dv/dT),
k7 = (1/V) (dV/dP);

Cy = (dU/dT)y

From the Thermodynamic Square

dU =TdS — pdV so Cy = (dU/dT), =T (dS/dT)y - p (dV/dT)y
Second term is 0 dV at constant Vis 0

(dS/dT)y = C/T

Similarly

C, = (dH/dT),

From the Thermodynamic Square

dH =TdS + Vdp so C, = (dH/dT), = T (dS/dT), - V (dp/dT),
Second term is O dp at constant p is O

(dS/dT),=C, /T

Write a differential expression for dS as a function of Tand V

dS = (dS/dT)dT + (dS/dV);dV using expression for C,, above and Maxwell for (dS/dV);

dS =C,/T dT + (dp/dT),dV use chain rule: (dp/dT), = -(dV/dT), (dP/dV); = Va / (Vky)

Take the derivative for C,: C,/T = (dS/dT), = C, /T (dT/dT), + (o/x7)(dV/dT), = Cy, /T + (Vou?/xy)
Cp- C, = a?VT/ky



Table 8.1 Number of modes and heat capacity of gases in the classical limit.

Number of modes Classical

Translational ~ Rotational Vibrational Cy /R Cpm/R
A(g) 3 3/2 5/2
AB(g) 3 2 7/2 9/2
AB>(g) 3 3 3 6 7
non-linear
AB,(g) 3 2 4 13/2 15/2
linear
AB,_(g) 3 3 (3n —6) 3+Bn-6) 4+ @3n-06)
non-linear
AB,_,(g) 3 2 (3n -95) 712 + Bn—-6) 9/2 + (3n-6)

linear
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Figure 8.2 Molar h
symbols at 5000 K 1

/ Vibration
—

/ Rotauon

Translation 1

0
10 25 50 75100 250 500 1000 2500 S000

Tcmpcralure. K

Figure 3.9 Heat capacity at constant volume of one molecufe of H, in

the gas phase. The vertical scale is in fundamental units; 1o oblain a value
in conventional units, multiply by k,. The contribution from the three
teanslational degrees of freedom is §; the contribution at high temperatures
from the two rotational degrees of freedom is 1; and the contribution

from the potential and kinctic encrgy of the vibrational motion in the

high temperature limit is 1, The classical limits are attained when

v » refevant energy level separations”,

1L

00

Monoatomic H(g) with only
translational degrees of
freedom is already fully
excited at low temperatures.
The vibrational frequencies
(n) of H2(g) and H20(g) are
much higher, in the range of
100 THz, and the associated
energy levels are significantly
excited only at temperatures
above 1000 K. At room
temperature only a few
molecules will have enough
energy to excite the
vibrational modes, and the
heat capacity is much lower
than the classical value. The
rotational frequencies are of
he order 100 times smaller,
so they are fully excited
above ~10 K.

1d H>O(g). The open
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Atoms in a crystal (Dulong and Petit Model)
Works at high temperature

Three Harmonic oscillators, x, y, z

. . Each atom in a solid has 6 springs
Spring (Potential Energy) . .

; . Each spring with % kT energy
dU/dx = F = -kx where x is 0 at the rest position

So,6/2R=3R=C,

U=-1/2 kx?
Kinetic Energy
U =% mc?

2 | 9 3 ) 3 2, . $ |
L = }m('" +7lK.\'" — }m/\“a)“ cos”™ Wt +7LKA“ SIn” Wt

- K
X = A sin Wt w=21TV = | —
m
Three oscillator per atom so U, = 3RT -SUV
dU = -pdV + TdS H A

. _ . d(U/dT)y = T(dS/dT),=C -pGT
Cym=3R=2494]J K I'mol-! (U/dT)y =T Jv=Cy P
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Phonons Two size scales, a and A
If A > a you are within a Brillouin Zone
Wavevector k = 27t/A
k-vector is like the inverse-space vectors for the lattice
It is seen to repeat in inverse space making an inverse lattice
A phonon with wavenumber k is thus equivalent to an
infinite family of phonons with
wavenumbers k + 2n/a, k £ 4ni/a, and so forth.
a)C [ ] (] L]
° . e —p e | & | o
L] L] ® @ [ ] \I
Brillouin zone
Brillouin zones, (a) in a square lattice, and (b) in a
b) hexagonal lattice

those whose bands become zero at the center of
the Brillouin zone are called acoustic phonons, since they
correspond to classical sound in the limit of long

wavelengths. The others are optical phonons, since the&y
ran he avritad hyv elartronmanneatie radiatinn



https://en.wikipedia.org/wiki/Brillouin_zone
https://en.wikipedia.org/wiki/Acoustic_phonon
https://en.wikipedia.org/wiki/Optical_phonon

Phonons Two size scales, a and A
If A > a you are within a Brillouin Zone
Wavevector k = 21t/A

1 dZ,.(E)
vV  dE

The density of states is defined by D(E) =

The partition function can be defined in terms of E or in terms of k
E and k are related by the dispersion relationship which differs for different systems

For a longitudinal Phonon in a string of atoms the dispersion relation is:

sin ko |
2

where wy = \,-"kp /m is the oscillator frequency, m the mass of the

E = 2hw

w(k)

atoms, kp the inter-atomic force constant and a inter-atomic spacing.
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Phonons

Bose-Einstein statistics gives the probability of finding a phonon in a given state:

n(wrs) =

}u‘)k,s
exp o T —1
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Phonons _ , ,
Dispersion relation for phonons

« 2 ka
i e rl s Ve (2 et ? _4sin® 3
+ my  my /) my Mo myms

N

w(k)

Plus optical
acoustic Minus Acoustic

rd

-n/a 0 _, m/a
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Einstein Model
Works at low and high temperature
Lower at low temperature

Quantized energy levels

— |-
g, =(n+ f)hw

Bose-Einstein statistics determines the distribution of energies

_ 1
The mean “n” at T is given by n =
exp(hw/kgT ) —1

Average energy for a crystal with three identical oscillators

U =3N(1 + mhog =3N L + L ,
= - 2 exp(ha)E //\BT)—I
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Einstein Model
Works at low and high temperature
Lower at low temperature

Average energy for a crystal with three identical oscillators

+nhog :BN( A0k, o i J

U =3N(

N |—

2 exp(hwg / kgT) —1

T >
Cy.m =[ﬂJ =3R[ Of j exp(Og /T)
| b

hog
Einstein temperature: @ E — E
kg
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Dispersion Curve

‘ qd
Cl)( (I) = _|—18S1Nn ~l—— Angular frequency of vibrations as a function of wavevector, q
m 2
1.2
—
" w=a|Kig —mla < g < mla
. m
S 08} First Brillouin Zone of
S the one-dimensional
N 0.6 lattice
=
S 041
0.2 Longer wavevectors
- are smaller than the
0.0 lattice
—t/a 0 mla

<«— first Brillouin zone ——p
q

Figure 8.5 The dispersion curve for a one-dimensional monoatomic chain of atoms.
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Longitudinal and Transverse dispersion relationships for [100],[{110],
and [111] for lead

Transverse degenerate for [100] and [111] (4 and 3 fold rotation axis)
Not for [110] (two fold rotation axis)
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<«— first Brillouin zone ——»
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q
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Figure 8.7 Experimental dispersion relations for acoustic modes for lead at 100 K [2].
Reproduced by permission of B. N. Brockhouse and the American Physical Society. 77



Op=315K
Op = 244 K

Cpy/JK ' mol™

oL L
0 200 400

T/K

Figure 8.12 Experimental heat capacity of Cu at constant pressure compared with the
Debye and Einstein Cy, ,, calculated by using O = 244 K and O = 314 K. The vibrational
density of states according to the two models is shown in the insert.

Higher Characteristic T
represents stronger
bonds
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Table 8.2. Debye temperature (Op in K) and electronic heat capacity coefficient (see Sec-
tion 8.4) (yin mJ K1 mol‘l) of the elements.

Li [Be ‘A B [c N o [F |Ne
344 (1440 : Qp : 2050 s
18 |2 }’ Higher Characteristic T 0

Na [Mg rbiirj : ents stronger Al [Si |P S Cl |Ar
158 400 428 645 92
14 |14 14

K |Ca |Sc [T1 |V Cr [Mn |Fe |[Co |Ni [Cu |Zn |Ga |Ge |As |[Se |Br [Kr
91 |230 (360 (420 [380 (630 |410 [470 (445 450 |315 |327 (320 |374 (282 |90 72
21 (77 36 (92 |16 |180 |50 (48 (73 |7 6 6

Rb |Sr |[Y |Zr [Nb Mo |[Tc [Ru |[Rh [Pd |Ag |Cd (In |Sn |[Sb |Te |[I Xe
56 (147 (280 |291 |275 (450 600 (480 [274 |225 |209 (108 (200 (211 [IS53 64
24 (37 30 (88 |21 34 49 (100 |6 7 18 |18

Cs |Ba |[La Hf |[Ta (W |Re |Os |Ir [Pt |[Au [Hg [TI |Pb |Bi [Po [At |Rn
33 (110 |[142 |252 |240 (400 (430 (500 |420 |240 |165 (72 (79 [105 |119

32 |27 26 59 |12 |25 |24 (31 |66 |7 19 |15 |34 79




Modulus and Heat Capacity

c =E¢
F/A =E Ad/d

F=KAd
K=F/Ad=EA/d

At large g, ® = V(4K/m)
This yields op from E

For Cu, 0p = 344K

@D _ th =27 IIVD

kg kg
0‘)D= 32 THz
K=13.4N/m

wp = 18 THz

(0/(4K/m)1/2

1.2

.

1.0

0.8
0.6
0.4

02}

0.0

w=da

f—

|
S
\'m g

—t/a 0
<«—— first Brillouin zone ——p

q

tla
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Spectroscopy measures vibrations, this can be used to calculate the
density of states, this can be integrated to obtain the heat capacity

IR: High Polarity
Motion of charged
atoms under
electromagnetic field

NaCl

(a) . (b)
9 100 / ‘\ Hf
] ]
s N | ” . z
E Vi ‘ \ z
z \ 13}
g 10, | / E
= |
& 10, )
ot W
500 1000 1 1500 2000
v/cm
4 9 2 4-—degeneracy

c) 03 s )

( (d)

8 Acoustic 10, |10, |10, 10, TB 100

a 02¢f modes =)

= Internal -

5 optic {M

= I

-_%f 0.1Ff ()bti‘c modes := 20

> continuum b’—

0.0 . . . .
0 400 800 1200 1600

v/em™

Figure 8.16 (a) IR and (b) Raman spectra for the mineral calcite, CaCO3. The estimated density
of vibrational states is given in (¢) while the deconvolution of the total heat capacity into contribu-
tions from the acoustic and internal optic modes as well as from the optic continuum is given in

(d).
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-SUV
H A

CV = (dU/dT)V -pGT

From the Thermodynamic Square

Second term is 0 dV at constant V is O
(dS/dT)y = Cy /T

Similarly

C, = (dH/dT),

From the Thermodynamic Square

dH =TdS + Vdp so C, = (dH/dT), =T (dS/dT), - V (dp/dT),

Second term is 0 dp at constant p is O
(dS/dT), =C, /T

Integrate C,,/T dT or Integrate C,/T dT to obtain S

Low Temperatures Solve Numerically
High Temperatures Series Expansion

. 2 4
s=3R%+m L|+2 ) -] 9’] -
3 0, 40\ T 2240\ T

Entropy from Heat Capacity

(Op ) exp(Op IT)

('\'Am V‘)l - y
T J [exp(O/T)-1]

Op/T
[exp(Og/T)—1]

Sg —3R{ —1In[l —exp(-O g /T)]

GE :hwE/kB

3 0p/T

Gt =9R[L) ¢
GD 0 ((’A\ _l)—
30p/T I
sp =3R| ¥ [ = ¢ _ o[l - exp(-8p/T)]
o3 [exp(x) —1]
P: 0
Op =hwp/kg
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Figure 8.22 Variation of the electronic heat capacity coefficient with composition for the

alloys Rh—Pd and Pd—Ag [17]. Solid and dotted lines represent the electronic DoS for the 5s
and 4d bands, respectively.

:21'1(8F)kZBT

A striking example is the electronic heat capacity coefficients
observed for Rh—Pd—Ag alloys given in Figure 8.22 [17]. In the
rigid band approach the addition of Ag to Pd gives an extra
electron per atom of silver and these electrons fill the band to a
higher energy level. Correspondingly, alloying with Rh gives an
electron hole per Rh atom and the Fermi level is moved to a
lower energy. The variation of the electronic heat capacity
coefficient with composition of the alloy maps approximately
the shape of such an electron band.
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From Kittel and Kroemer Thermal Physics Chapter 2

For a system with quantized energy and two states €; and ¢,, the ratio of the probabilities of
the two states is given by the Boltzmann potentials, (t is the temperature kgT)

l?(r,) C\p(-—r'/r)

P(s,) cxp(~c../r)

If state ¢, is the ground state, €,=0, and the sum of exponentials is called the partition
function Z, and the sum of probabilities equals 1 then,

7 = explee,/7) + 1 T o 18 __fﬁ’(:i’flh C, = (3U/07),
Z l + exp(—¢g/t)
Z normalizes the probability for a state “s” & ( e )2 CXp(c/k T)
' N "
P(e,) = exp(-6/7)/Z [exple/k, T) + 17

_ (& Sie_gi/r)/z _ 72 (‘”LZ)

The average energy for the system is U =

84



Heat Capacity of Polymers

Amorphous structure but with regular order along the chain
1-d vibrational structure

Einstein method works well above 100K

E(8/T) = [(8/T)%exp(6/T)] / [exp(B/T) - 1]°

Ce= Nkz ne E(O/T) N.toms = nt;rr]:ber of atoms in a mer unit
or CH,

N = number of skeletal modes of vibration

Ne=3N,oms - N
. Atoms N = 2 for -(CH,),-

4 Or ¥  exp(O/T)
C\".m :[J :3R( Lj i B
dr )y r [exp(Of /T)—-1]"

hoy
Einstein temperature: (‘) E — t
kg
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Course Summary

IX. Solution Models and Equations of State:

Regular solution;

Quasi-regular solution with lattice vibrations;

Accounting for correlations (mean field or specific interactions);

Virial approach for mean field;

Correlation function for specific interactions;

Van der Waals model;

Margulis model; Margulis acid-base;

Redlich-Kister model (asymmetric phase diagrams);

Scatchard-Hildebrand theory (volume versus mole fraction);

Flory-Huggins model (polymers based on volume fraction);

Group Contribution Models:

Hydrogen bonding MOSCED (Modified separation of cohesive energy density); SSCED (Simplified
separation of cohesive energy density);

Local Clustering Models: Wilson’s equation; NRTL (Non-random two liquid model);
Surface area rather than volume fraction for interactions: UNIQUAC (Universal quasi-chemical model);
UNIFAC (Universal functional activity coefficient model);

Solutions with multiple sublattices (NaCl);

Order-disorder systems

Order parameter

Non-stoichiometric compounds (perovskite oxides)



Regular Solution Solution Model

! ZNA N
G = A=—kgT In L +U +UB+Mw
NA!Npg! N

Ami.\(" m = RT[.\'A In XA + XB In .\'B] + QAB"‘A XB

Q AB — :sz\B

A mix Hm ~ A mi.\U m - Q ABYAXYB

Mp ™ dG/dXA

2

yz\ —‘Ux =RT In UA =RT ln.\'A +QAB.\'B

2

RT In YA = QAB'\-B

AB
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Excess molar Gibbs energy of mixing for quasi-regular solution

CXC v _ —
_\nn\(' m - 2l AXB(WAR I”.\B)

G = H -TS so first term is enthalpic, second is entropic

CXC I

Gy =xaxpQag| | 1 is a characteristic
mix / 4 ‘I

temperature, when T = t ideal
solution behavior is seen
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Correlations

DILUTE WEAK CORRELATIONS STRONG CORRELATIONS
STRUCTURAL CORRELATED
SCREENING > PEAK
1/¢v
= = -4
A S S
Sona
q(A”) q(A”") q(A”")
(a) (b) (c)

Dilute: Ideal behavior,
there are no interactions

Semi-dilute: weak or
strong interactions are
possible

With weak interactions the
system can be treated with
a “mean field”. No
correlation is observed, we
can use the second virial
coefficient and Hildebrand
Model

With strong interactions
we need to use detailed
information about
interactions, correlation
function or other models
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F1G. 3.2. Structure factor of liquid sodium near the normal melting temperature. The points are experimental
x-ray scattering results® and the curve is obtained from a Monte Carlo calculation® for the r =4 potential under
the same thermodynamic conditions.
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Chapter 11 Elliot and Lira

Margulis one-parameter Model
Hildebrand Model

ir { X.X AC\C (' R . Sz
R1 124142 A mixUm =XAXB3CAR

Iny, = A,5(1-x,)?

Margulis acid-base Model

acidity parameter, o, and basicity parameter, 3.

(» A= (ay— a))(By — By + V)(4RT)
(a)

Table 11.1. Acidity («) and Basicity (B) Parameters in (J/cm’)"/2 and Molar Volumes
(cm®/mol) for Various Substances as liquids at 298 K2

@ Q‘mo‘@ 0‘(3 Compound o B vt
(b)

Acetone 0 11.14 734
Benzene 0.63 2.24 89.7

0‘@ 0|HHHH|0 0‘@ 0|”|H”“,3 Chloroform 5.80 0.12 80.5

i U1t Ethanol 12.58 1329 582

(c) n-Hexane 0 0 130.3

Figure 11.7. Observations about complexation. (a) A mixture of acid with base suggests Isooctane 0 162.9
favorable interactions, as in acetone + chloroform. (b) Hydrogen bonding leads to unfavorable Isopropanol 9.23 11.86 76.8
interactions when one component associates strongly and the other is inert, as in isooctane + Methanol 17.43 14.49 40.5
water. (¢) Hydrogen bonding solutions can also be ideal solutions if both components have MEK 0 9.70 90.1
similar acidity and basicity, as in methanol + ethanol. Water 50.13 15.06 18.0




Course Summary

X. Thermodynamics and Materials Modeling:

Quantum mechanics (ab initio method, electronic wave functions, nuclei don’t move);

Density functional theory (Minimize E(p) as a function of p(r));

Molecular dynamics modeling (potential fields between atoms);

Mesoscale models (coarse graining; short range interaction potentials);

Dissipative particle dynamics (DPD);

Monte Carlo Metropolis method;

Ising model;

Packages to do materials simulations of different types: LAMMPS; HOOMD-blue; ESPResSo; etc.
Free servers for simulations from Google: Colaboratory



Molecular mechanics

Potential-based methods

Material

®_o
)

Model

Energy minimization

Lattice dynamics

Molecular dynamics
(MD)

Monte Carlo (MC)

Thermodynamics and Materials Modeling

Molecules, Periodic Quantum mechanics
clusters systems <
HY =EY
Hartree-Fock
Density functional
theory (DFT)
/ Ab initio molecular
Structure dynamics
Thermodynamic properties
Kinetics Quantum Monte Carlo

Figure 11.1

Coarse Grain Simulations
DPD Simulations
Machine Learning

Data Mining Techniques
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Quantum mechanical/ab initio methods

1) Electronic wavefunction is independent of the nuclei since electrons are much
smaller and move much faster: Born Oppenheimer Approximation
2) Solve the Schrodinger equation

HY = EY
Hamiltonian in atomic units:
+ l ey _: .l . / Y wlh l W Y /(I//f
Ha-=) Vi=-220—2—+) ) + 2 |
2 o Ti—=dgl T alr; —r;l \d d, |
i i o X i i J a pra p o

r; electron positions; d, nuclear positions, Z, nuclear charge
Kinetic Energy — e” nuc. attraction + e e repulsion + Nuc. Nuc. repulsion
3) Solve approximately since true wave function can’t be found directly. Compare
proposed function results with data. Variational Principle: lowest energy wins.

J' W HY dt

J Y*W¥Wdr

E

4) Obey Pauli exclusion principle.

94



Density functional theory

1) Ground state can be obtained through minimization of E(p) of p(r)
2) Parallel non-interacting system (NIS)

N .
pr)=) ly ()l
i=1
3) Write the energy functional as

E[p]: TS[p]—"nug[p]—J[pl_E.\([p]
1 N 2 [ Z(z
= _~ij,- (r\v y/,-(r)dr—ZJ pr)——ar
21_1 s lr—d,|

1 pe p(p(E’) . 1. . &
2 '” Ir—r'l R Sl
KE of NIS + e nuc. int. + Coulomb + exchange correlation energy
4) Minimize E[p] to obtain wave functions then iterate to obtain the ground
state density and energy
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Molecular Dynamics

1) Generate initial condition with particles identified by position and velocity
2) Calculate the force on each particle using potentials
3) Forces (accelerations) remain constant for a time step, position and velocity change

v:(1+At/2) r,(r—Az/Z)~ Ji At

m;

ri(t +At)=r;(1)+v;(t + At/2)At

4) Repeat 3) until temperature is constant

3., .. 1 2
,’-\/‘BI *qzmi\l

-—_ -_ 1‘

5) After steady state record velocities and positions so that <rZ> = 6Dt is found
Time calculation is on the order of nanoseconds.

Neither Monte Carlo nor Molecular Dynamics can calculate the free energy since they ignore
large energy regions of phase space
They can calculate differences in free energy for phase diagram construction
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Mesoscale Phenomena and Models

Due to wide range of characteristic lengths - times, several simulation
methods that describe length and time scales have been developed:

- \Js\eﬁ‘ _
= (’(\ POV
-3 \ “\\“\)\) “\a\‘."'\ﬁ\s {
g \ (_‘,0 Ca\'.\\‘!“"
(=)
<A R pv)
. . o o \4
Engineering pa
K )
\ »
\
.\ O\N“
2\ o?‘o
V82 2]
\
o
03
\
S
\"\\“ \ 9 \
‘9
2\
\%
\Dv\“ \P
X
A \
e W \ \
\\o“\“““‘\\s"“‘ VG
P \
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\
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”
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Dissipative Particle Dynamics (DPD)

___________

i

* MICROscopic level
approach

+ atomistic approach is
often problematic
because larger
time/length scales are
involved

Ref on Theory: Lei,

DOPD

l

+ set of point particles that
move of f-lattice through
prescribed forces

* each particle is a
collection of molecules

* MESOscopic scales
* momentum-conserving
Brownian dynamics

Navier-Stokes

l

+ continuum fluid
mechanics

* MACROscopic
modeling

Caswell & Karniadakis, Phys. Rev. E, 2010 @ W

5P
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Monte Carlo/Metropolis Method

Periodic Boundary Conditions

FixT,V, N

0

1)
2)
3)

1)
2)
3)
4)
5)
6)

’ exp(-U(Z)/ kgT)

J Q(Z)P(Z)dZ P(Z) ’ ‘ “Z” is a state of the system
Jc\;u U(Z)/ kgT) dZ

Calculate ¢(Z) by molecular mechanics with potentials
Accept a configuration “Z” if it has a low energy relative to kT with some randomness
Calculate the average W

| M
0 SN 02)
M =

Start with a random configuration calculate ¢(Z)

Move one atom or molecule or group of molecules

Calculate ¢(Z’) if lower than ¢(Z) accept

If higher than ¢(Z) calculate exp(-A¢/kT) and a random number from 0 to 1
If higher than random number accept

Repeat
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Dissipative Particle Dynamics (DPD)

FIG. 1. Dissipative particles interact pair-wise with a conservative linear
repulsive force, and a Brownian dashpot made of a friction force that reduces
the relative velocity between the particles and a stochastic force that gives
kicks of equal size and opposite directions to the particles. These forces vanish
beyond a cutoff radius r,..
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Course Summary

XI. Experimental Thermodynamics
Calorimetry
Differential Scanning Calorimetry
Modulated DSC
Microcalorimetry
Differential Thermal Analysis
Thermal Gravimetric Analysis
Bomb Calorimetry/Combustion Calorimetry

Didn’t cover the other 25 techniques (no time)



I1.
1.
IV.

VL.
VII.
VIII.
IX.

XI.

Course Summary

Introduction

Single component systems

Solutions

Phase diagrams

Phase stability

Surfaces

Heat of formation

Heat capacity

Solution models and equations of state
Thermodynamics and materials modeling
Experimental methods






